Solutions for the Navier-Stokes equations with critical and subcritical fractional dissipation in Lei-Lin and Lei-Lin-Gevrey spaces

Pub Date : 2023-11-10 DOI:10.58997/ejde.2023.78
Wilberclay G. Melo, Nata F. Rocha, Natielle dos Santos Costa
{"title":"Solutions for the Navier-Stokes equations with critical and subcritical fractional dissipation in Lei-Lin and Lei-Lin-Gevrey spaces","authors":"Wilberclay G. Melo, Nata F. Rocha, Natielle dos Santos Costa","doi":"10.58997/ejde.2023.78","DOIUrl":null,"url":null,"abstract":"In this article, we prove the existence of a unique global solution for the critical case of the generalized Navier-Stokes equations in Lei-Lin and Lei-Lin-Gevrey spaces, by assuming that the initial data is small enough. Moreover, we obtain a unique local solution for the subcritical case of this system, for any initial data, in these same spaces. It is important to point out that our main result is obtained by discussing some properties of the solutions for the heat equation with fractional dissipation.
 For more information see https://ejde.math.txstate.edu/Volumes/2023/78/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.2023.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we prove the existence of a unique global solution for the critical case of the generalized Navier-Stokes equations in Lei-Lin and Lei-Lin-Gevrey spaces, by assuming that the initial data is small enough. Moreover, we obtain a unique local solution for the subcritical case of this system, for any initial data, in these same spaces. It is important to point out that our main result is obtained by discussing some properties of the solutions for the heat equation with fractional dissipation. For more information see https://ejde.math.txstate.edu/Volumes/2023/78/abstr.html
分享
查看原文
Lei-Lin和Lei-Lin- gevrey空间中临界和次临界分数耗散Navier-Stokes方程的解
在本文中,我们通过假设初始数据足够小,证明了Lei-Lin和Lei-Lin- gevrey空间中广义Navier-Stokes方程临界情况的唯一全局解的存在性。此外,在这些相同的空间中,对于任意初始数据,我们得到了该系统的次临界情况的唯一局部解。重要的是要指出,我们的主要结果是通过讨论分数阶耗散热方程解的一些性质而得到的。欲了解更多信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/78/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信