Tuomas Yrttimaa, Shigemichi Matsuzaki, Ville Kankare, Samuli Junttila, Ninni Saarinen, Antero Kukko, Juha Hyyppä, Jun Miura, Mikko Vastaranta
{"title":"Assessing Forest Traversability for Autonomous Mobile Systems Using Close-Range Airborne Laser Scanning","authors":"Tuomas Yrttimaa, Shigemichi Matsuzaki, Ville Kankare, Samuli Junttila, Ninni Saarinen, Antero Kukko, Juha Hyyppä, Jun Miura, Mikko Vastaranta","doi":"10.5552/crojfe.2024.2229","DOIUrl":null,"url":null,"abstract":"Advances in sensor technology and computing performance has brought us into an era of digital forestry where a forest environment can be digitally replicated. At the same time, an increasing interest in the use of unmanned vehicles and other autonomous mobile systems (AMSs) in forest mapping and operations has emerged. However, a forest is an unstructured and rather complex environment for AMSs to operate in, and usually some kind of a priori information of traversability is required. The aim of this study was to assess forest traversability for AMSs using high-density airborne laser scanning (ALS) point clouds. It was assumed that such point clouds acquired from a helicopter flying at a low altitude can be used to characterise vegetation obstacles affecting forest traversability. A voxel-based vegetation occupancy analysis was carried out with the aim to detect open space to define traversable three-dimensional space. The experimental setup included seven sample plots (32×32 m) representing diverse boreal forest structures. Terrestrial laser scanning (TLS) was used for obtaining reference for vegetation occupancy. Comparison between ALS and TLS revealed an overall accuracy of 0.85–0.94 with a recall of 0.78–0.91 and a precision of 0.62–0.74 for ALS-based voxel classification for vegetation occupancy depending on forest structure. This implies that up to 91% of voxels assigned a classification »occupied« based on the TLS could be correctly classified using the ALS, while up to 74% of voxels assigned a classification »occupied« using the ALS were occupied based on the TLS. Density of low vegetation accounted for 83% of the variation in accuracy and precision. The feasibility of vegetation occupancy information to be used by an AMS for navigation was also demonstrated. It was assumed that the ALS data convey as sufficient information of AMS path planning as does the TLS data. The experiments showed that out of 1393 randomly generated paths based on empty space detected by the ALS, 72% were considered feasible when validated with the TLS data. The success rate in path planning varied from 0.54 to 0.92 between the sample plots and was seemingly affected by vegetation density that accounted for 53% of variation in success rate. Altogether, the demonstrated possibility to predefine forest traversability using remote sensing will support the use of AMSs in forestry.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" February","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Journal of Forest Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5552/crojfe.2024.2229","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in sensor technology and computing performance has brought us into an era of digital forestry where a forest environment can be digitally replicated. At the same time, an increasing interest in the use of unmanned vehicles and other autonomous mobile systems (AMSs) in forest mapping and operations has emerged. However, a forest is an unstructured and rather complex environment for AMSs to operate in, and usually some kind of a priori information of traversability is required. The aim of this study was to assess forest traversability for AMSs using high-density airborne laser scanning (ALS) point clouds. It was assumed that such point clouds acquired from a helicopter flying at a low altitude can be used to characterise vegetation obstacles affecting forest traversability. A voxel-based vegetation occupancy analysis was carried out with the aim to detect open space to define traversable three-dimensional space. The experimental setup included seven sample plots (32×32 m) representing diverse boreal forest structures. Terrestrial laser scanning (TLS) was used for obtaining reference for vegetation occupancy. Comparison between ALS and TLS revealed an overall accuracy of 0.85–0.94 with a recall of 0.78–0.91 and a precision of 0.62–0.74 for ALS-based voxel classification for vegetation occupancy depending on forest structure. This implies that up to 91% of voxels assigned a classification »occupied« based on the TLS could be correctly classified using the ALS, while up to 74% of voxels assigned a classification »occupied« using the ALS were occupied based on the TLS. Density of low vegetation accounted for 83% of the variation in accuracy and precision. The feasibility of vegetation occupancy information to be used by an AMS for navigation was also demonstrated. It was assumed that the ALS data convey as sufficient information of AMS path planning as does the TLS data. The experiments showed that out of 1393 randomly generated paths based on empty space detected by the ALS, 72% were considered feasible when validated with the TLS data. The success rate in path planning varied from 0.54 to 0.92 between the sample plots and was seemingly affected by vegetation density that accounted for 53% of variation in success rate. Altogether, the demonstrated possibility to predefine forest traversability using remote sensing will support the use of AMSs in forestry.
期刊介绍:
Croatian Journal of Forest Engineering (CROJFE) is a refereed journal distributed internationally, publishing original research articles concerning forest engineering, both theoretical and empirical. The journal covers all aspects of forest engineering research, ranging from basic to applied subjects. In addition to research articles, preliminary research notes and subject reviews are published.
Journal Subjects and Fields:
-Harvesting systems and technologies-
Forest biomass and carbon sequestration-
Forest road network planning, management and construction-
System organization and forest operations-
IT technologies and remote sensing-
Engineering in urban forestry-
Vehicle/machine design and evaluation-
Modelling and sustainable management-
Eco-efficient technologies in forestry-
Ergonomics and work safety