$\mathbb{R}$-covered foliations and transverse pseudo-Anosov flows in atoroidal pieces

IF 1.1 3区 数学 Q1 MATHEMATICS
Sergio R. Fenley
{"title":"$\\mathbb{R}$-covered foliations and transverse pseudo-Anosov flows in atoroidal pieces","authors":"Sergio R. Fenley","doi":"10.4171/cmh/547","DOIUrl":null,"url":null,"abstract":"We study the transverse geometric behavior of 2-dimensional foliations in 3-manifolds. We show that an $\\mathbb{R}$-covered, transversely orientable foliation with Gromov hyperbolic leaves in a closed 3-manifold admits a regulating, transverse pseudo-Anosov flow (in the appropriate sense) in each atoroidal piece of the manifold. The flow is a blow up of a one prong pseudo-Anosov flow. In addition we show that there is a regulating flow for the whole foliation. We also determine how deck transformations act on the universal circle of the foliation.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/cmh/547","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the transverse geometric behavior of 2-dimensional foliations in 3-manifolds. We show that an $\mathbb{R}$-covered, transversely orientable foliation with Gromov hyperbolic leaves in a closed 3-manifold admits a regulating, transverse pseudo-Anosov flow (in the appropriate sense) in each atoroidal piece of the manifold. The flow is a blow up of a one prong pseudo-Anosov flow. In addition we show that there is a regulating flow for the whole foliation. We also determine how deck transformations act on the universal circle of the foliation.
$\mathbb{R}$-覆盖叶和横向伪anosov流
研究了三维流形中二维叶形的横向几何性质。我们证明了一个$\mathbb{R}$覆盖的,具有Gromov双曲叶的横向可定向叶理在一个封闭的3-流形中,在流形的每一个环向块上都允许一个调节的,横向的伪anosov流(在适当的意义上)。该流是单尖伪阿诺索夫流的放大。此外,我们还证明了整个叶理存在一个调节流。我们还确定了甲板变换如何作用于叶理的万向圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信