{"title":"Rigidity in elliptic curve local-global principles","authors":"Jacob Mayle","doi":"10.4064/aa230101-29-6","DOIUrl":null,"url":null,"abstract":"We study the rigidity of the local conditions in two well-known local-global principles for elliptic curves over number fields. In particular, we consider a local-global principle for torsion due to Serre and Katz, and one for isogenies due to Sutherland.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/aa230101-29-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We study the rigidity of the local conditions in two well-known local-global principles for elliptic curves over number fields. In particular, we consider a local-global principle for torsion due to Serre and Katz, and one for isogenies due to Sutherland.