{"title":"The Keisler–Shelah isomorphism theorem and the continuum hypothesis","authors":"Mohammad Golshani, Saharon Shelah","doi":"10.4064/fm198-5-2022","DOIUrl":null,"url":null,"abstract":"We show that if for any two elementary equivalent structures $\\mathbf M, \\mathbf N$ of size at most continuum in a countable language, $\\mathbf M^{\\omega }/ \\mathcal U \\simeq \\mathbf N^\\omega / \\mathcal U$ for some ultrafilter $\\mathcal U$ on $\\omega ,$ t","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/fm198-5-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We show that if for any two elementary equivalent structures $\mathbf M, \mathbf N$ of size at most continuum in a countable language, $\mathbf M^{\omega }/ \mathcal U \simeq \mathbf N^\omega / \mathcal U$ for some ultrafilter $\mathcal U$ on $\omega ,$ t