Models of random subtrees of a graph

IF 1.3 Q2 STATISTICS & PROBABILITY
Luis Fredes, Jean-Francois Marckert
{"title":"Models of random subtrees of a graph","authors":"Luis Fredes, Jean-Francois Marckert","doi":"10.1214/23-ps22","DOIUrl":null,"url":null,"abstract":"Consider a connected graph G=(E,V) with N=|V| vertices. The main purpose of this paper is to explore the question of uniform sampling of a subtree of G with n nodes, for some n≤N (the spanning tree case correspond to n=N, and is already deeply studied in the literature). We provide new asymptotically exact simulation methods using Markov chains for general connected graphs G, and any n≤N. We highlight the case of the uniform subtree of Z2 with n nodes, containing the origin (0,0) for which Schramm asked several questions. We produce pictures, statistics, and some conjectures. A second aim of the paper is devoted to surveying other models of random subtrees of a graph, among them, DLA models, the first passage percolation, the uniform spanning tree and the minimum spanning tree. We also provide new models, some statistics, and some conjectures.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"18 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ps22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Consider a connected graph G=(E,V) with N=|V| vertices. The main purpose of this paper is to explore the question of uniform sampling of a subtree of G with n nodes, for some n≤N (the spanning tree case correspond to n=N, and is already deeply studied in the literature). We provide new asymptotically exact simulation methods using Markov chains for general connected graphs G, and any n≤N. We highlight the case of the uniform subtree of Z2 with n nodes, containing the origin (0,0) for which Schramm asked several questions. We produce pictures, statistics, and some conjectures. A second aim of the paper is devoted to surveying other models of random subtrees of a graph, among them, DLA models, the first passage percolation, the uniform spanning tree and the minimum spanning tree. We also provide new models, some statistics, and some conjectures.
图的随机子树模型
考虑一个有N=|V|个顶点的连通图G=(E,V)。本文的主要目的是探讨对于n≤n(生成树的情况对应于n= n,在文献中已经有深入的研究)的n个节点的G的子树的均匀抽样问题。对于一般连通图G和任意n≤n,我们给出了新的使用马尔可夫链的渐近精确模拟方法。我们强调了具有n个节点的Z2的一致子树的情况,包含原点(0,0),对此Schramm提出了几个问题。我们制作图片、统计数据和一些猜想。本文的第二个目的是研究图的随机子树的其他模型,其中包括DLA模型、第一通道渗透模型、均匀生成树和最小生成树。我们还提供了新的模型,一些统计数据和一些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信