Estimating the Sizes of Binary Error-Correcting Constrained Codes

V. Arvind Rameshwar;Navin Kashyap
{"title":"Estimating the Sizes of Binary Error-Correcting Constrained Codes","authors":"V. Arvind Rameshwar;Navin Kashyap","doi":"10.1109/JSAIT.2023.3279113","DOIUrl":null,"url":null,"abstract":"In this paper, we study binary constrained codes that are resilient to bit-flip errors and erasures. In our first approach, we compute the sizes of constrained subcodes of linear codes. Since there exist well-known linear codes that achieve vanishing probabilities of error over the binary symmetric channel (which causes bit-flip errors) and the binary erasure channel, constrained subcodes of such linear codes are also resilient to random bit-flip errors and erasures. We employ a simple identity from the Fourier analysis of Boolean functions, which transforms the problem of counting constrained codewords of linear codes to a question about the structure of the dual code. We illustrate the utility of our method in providing explicit values or efficient algorithms for our counting problem, by showing that the Fourier transform of the indicator function of the constraint is computable, for different constraints. Our second approach is to obtain good upper bounds, using an extension of Delsarte’s linear program (LP), on the largest sizes of constrained codes that can correct a fixed number of combinatorial errors or erasures. We observe that the numerical values of our LP-based upper bounds beat the generalized sphere packing bounds of Fazeli et al. (2015).","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"144-158"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10131968/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study binary constrained codes that are resilient to bit-flip errors and erasures. In our first approach, we compute the sizes of constrained subcodes of linear codes. Since there exist well-known linear codes that achieve vanishing probabilities of error over the binary symmetric channel (which causes bit-flip errors) and the binary erasure channel, constrained subcodes of such linear codes are also resilient to random bit-flip errors and erasures. We employ a simple identity from the Fourier analysis of Boolean functions, which transforms the problem of counting constrained codewords of linear codes to a question about the structure of the dual code. We illustrate the utility of our method in providing explicit values or efficient algorithms for our counting problem, by showing that the Fourier transform of the indicator function of the constraint is computable, for different constraints. Our second approach is to obtain good upper bounds, using an extension of Delsarte’s linear program (LP), on the largest sizes of constrained codes that can correct a fixed number of combinatorial errors or erasures. We observe that the numerical values of our LP-based upper bounds beat the generalized sphere packing bounds of Fazeli et al. (2015).
二值纠错约束码的大小估计
在本文中,我们研究了二进制约束码对位翻转错误和擦除的弹性。在我们的第一种方法中,我们计算线性码的约束子码的大小。由于存在众所周知的线性码,可以在二进制对称信道(导致比特翻转错误)和二进制擦除信道上实现错误消失概率,因此这种线性码的约束子码也具有抗随机比特翻转错误和擦除的弹性。利用布尔函数傅里叶分析中的一个简单恒等式,将线性码的约束码字计数问题转化为对偶码的结构问题。我们通过表明约束的指示函数的傅里叶变换对于不同的约束是可计算的,来说明我们的方法在为我们的计数问题提供显式值或有效算法方面的效用。我们的第二种方法是使用Delsarte线性规划(LP)的扩展,在可以纠正固定数量的组合错误或擦除的最大尺寸的约束代码上获得良好的上界。我们观察到,我们基于lp的上界的数值优于Fazeli等人(2015)的广义球体填充界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信