Chuanyun Ouyang, Liming Cai, Bin Liu, Tianxiang Zhang
{"title":"An improved wavelet threshold denoising approach for surface electromyography signal","authors":"Chuanyun Ouyang, Liming Cai, Bin Liu, Tianxiang Zhang","doi":"10.1186/s13634-023-01066-3","DOIUrl":null,"url":null,"abstract":"Abstract Background The surface electromyography (sEMG) signal presents significant challenges for the dynamic analysis and subsequent examination of muscle movements due to its low signal energy, broad frequency distribution, and inherent noise interference. However, the conventional wavelet threshold filtering techniques for sEMG signals are plagued by the Gibbs-like phenomenon and an overall decrease in signal amplitude, leading to signal distortion. Purpose This article aims to establish an improved wavelet thresholding method that can filter various types of signals, with a particular emphasis on sEMG signals, by adjusting two independent factors. Hence, it generates the filtered signal with a higher signal-to-noise ratio (SNR), a lower mean square error (MSE), and better signal quality. Results After denoising Doppler and Heavysine signals, the filtered signal exhibits a higher SNR and lower MSE than the signal generated from traditional filtering algorithms. The filtered sEMG signal has a lower noise baseline while retaining the peak sEMG signal strength. Conclusion The empirical evaluation results show that the quality of the signal processed by the new noise reduction algorithm is better than the traditional hard thresholding, soft thresholding, and Garrote thresholding methods. Moreover, the filtering performance on the sEMG signal is improved significantly, which enhances the accuracy and reliability of subsequent experimental analyses.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01066-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Background The surface electromyography (sEMG) signal presents significant challenges for the dynamic analysis and subsequent examination of muscle movements due to its low signal energy, broad frequency distribution, and inherent noise interference. However, the conventional wavelet threshold filtering techniques for sEMG signals are plagued by the Gibbs-like phenomenon and an overall decrease in signal amplitude, leading to signal distortion. Purpose This article aims to establish an improved wavelet thresholding method that can filter various types of signals, with a particular emphasis on sEMG signals, by adjusting two independent factors. Hence, it generates the filtered signal with a higher signal-to-noise ratio (SNR), a lower mean square error (MSE), and better signal quality. Results After denoising Doppler and Heavysine signals, the filtered signal exhibits a higher SNR and lower MSE than the signal generated from traditional filtering algorithms. The filtered sEMG signal has a lower noise baseline while retaining the peak sEMG signal strength. Conclusion The empirical evaluation results show that the quality of the signal processed by the new noise reduction algorithm is better than the traditional hard thresholding, soft thresholding, and Garrote thresholding methods. Moreover, the filtering performance on the sEMG signal is improved significantly, which enhances the accuracy and reliability of subsequent experimental analyses.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.