Dashuai Liu, Jie Zhang, Chenlu Wang, Weilin Ci, Baoxia Wu, Huafeng Quan
{"title":"Integrated triangular fuzzy KE-GRA-TOPSIS method for dynamic ranking of products of customers’ fuzzy Kansei preferences","authors":"Dashuai Liu, Jie Zhang, Chenlu Wang, Weilin Ci, Baoxia Wu, Huafeng Quan","doi":"10.3233/jifs-234549","DOIUrl":null,"url":null,"abstract":"As society evolves, companies produce more homogeneous products, shifting customers’ needs from functionality to emotions. Therefore, how quickly customers select products that meet their Kansei preferences has become a key concern. However, customer Kansei preferences vary from person to person and are ambiguous and uncertain, posing a challenge. To address this problem, this paper proposes a TF-KE-GRA-TOPSIS method that integrates triangular fuzzy Kansei engineering (TF-KE) with Grey Relational Analysis (GRA) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Firstly, a Kansei evaluation system is constructed based on KE and fuzzy theory. A dynamic triangular fuzzy Kansei preference similarity decision matrix (TF-KPSDM) is defined to quantify customer satisfaction with fuzzy Kansei preferences. Secondly, dynamic objective weights are derived using Criteria Importance Though Intercrieria Correlation (CRITIC) and entropy, optimized through game theory to achieve superior combined weights. Thirdly, the GRA-TOPSIS method utilizes the TF-KPSDM and combined weights to rank products. Finally, taking the case of Kansei preference selection for electric bicycles, results indicate that the proposed method robustly avoids rank reversal and achieves greater accuracy than comparative models. This study can help companies dynamically recommend products to customers based on their Kansei preferences, increasing customer satisfaction and sales.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"25 9","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-234549","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As society evolves, companies produce more homogeneous products, shifting customers’ needs from functionality to emotions. Therefore, how quickly customers select products that meet their Kansei preferences has become a key concern. However, customer Kansei preferences vary from person to person and are ambiguous and uncertain, posing a challenge. To address this problem, this paper proposes a TF-KE-GRA-TOPSIS method that integrates triangular fuzzy Kansei engineering (TF-KE) with Grey Relational Analysis (GRA) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Firstly, a Kansei evaluation system is constructed based on KE and fuzzy theory. A dynamic triangular fuzzy Kansei preference similarity decision matrix (TF-KPSDM) is defined to quantify customer satisfaction with fuzzy Kansei preferences. Secondly, dynamic objective weights are derived using Criteria Importance Though Intercrieria Correlation (CRITIC) and entropy, optimized through game theory to achieve superior combined weights. Thirdly, the GRA-TOPSIS method utilizes the TF-KPSDM and combined weights to rank products. Finally, taking the case of Kansei preference selection for electric bicycles, results indicate that the proposed method robustly avoids rank reversal and achieves greater accuracy than comparative models. This study can help companies dynamically recommend products to customers based on their Kansei preferences, increasing customer satisfaction and sales.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.