Conceptualizing Flexibility in Programming-Based Mathematical Problem-Solving

IF 4 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Huiyan Ye, Oi-Lam Ng, Zhihao Cui
{"title":"Conceptualizing Flexibility in Programming-Based Mathematical Problem-Solving","authors":"Huiyan Ye, Oi-Lam Ng, Zhihao Cui","doi":"10.1177/07356331231209773","DOIUrl":null,"url":null,"abstract":"Computational thinking (CT) has received much attention in mathematics education in recent years, and researchers have begun to experiment with the integration of CT into mathematics education to promote students’ CT and mathematical thinking (MT) development. However, there is a lack of empirical evidence and new theoretical perspectives on the mechanisms of interaction between CT and MT. To address this research gap, this study analyses the participants’ thinking processes in solving programming-based mathematical problems from a flexibility perspective, focusing on the interplay between computational and mathematical thinking, that is, how CT and MT work together to influence and determine the problem-solver’s choice of solution strategy. Using data collected from a large design-based study, we summarise two types of flexibility and six subtypes of flexibility demonstrated by participants in the programming-based mathematical problem-solving process using thematic analysis. These different types of flexibility provide researchers and mathematics educators with new theoretical perspectives to examine the interplay of CT and MT. Findings will also contribute toward student learning characteristics in programming-based mathematical problem-solving to sketch the big picture of how CT and MT emerge in complementary or mismatching ways.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"24 4","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07356331231209773","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Computational thinking (CT) has received much attention in mathematics education in recent years, and researchers have begun to experiment with the integration of CT into mathematics education to promote students’ CT and mathematical thinking (MT) development. However, there is a lack of empirical evidence and new theoretical perspectives on the mechanisms of interaction between CT and MT. To address this research gap, this study analyses the participants’ thinking processes in solving programming-based mathematical problems from a flexibility perspective, focusing on the interplay between computational and mathematical thinking, that is, how CT and MT work together to influence and determine the problem-solver’s choice of solution strategy. Using data collected from a large design-based study, we summarise two types of flexibility and six subtypes of flexibility demonstrated by participants in the programming-based mathematical problem-solving process using thematic analysis. These different types of flexibility provide researchers and mathematics educators with new theoretical perspectives to examine the interplay of CT and MT. Findings will also contribute toward student learning characteristics in programming-based mathematical problem-solving to sketch the big picture of how CT and MT emerge in complementary or mismatching ways.
基于编程的数学问题解决的概念化灵活性
近年来,计算思维在数学教育中受到了广泛的关注,研究者开始尝试将计算思维融入数学教育,以促进学生的计算思维和数学思维的发展。然而,关于CT和MT之间相互作用的机制缺乏经验证据和新的理论视角。为了弥补这一研究空白,本研究从灵活性的角度分析了参与者在解决基于规划的数学问题时的思维过程,重点关注计算思维和数学思维之间的相互作用,即CT和MT如何共同影响和决定问题解决者的解决策略选择。利用从一项基于设计的大型研究中收集的数据,我们总结了参与者在基于规划的数学问题解决过程中表现出的两种类型的灵活性和六种子类的灵活性。这些不同类型的灵活性为研究人员和数学教育者提供了新的理论视角来研究CT和MT的相互作用。研究结果还将有助于研究学生在基于编程的数学问题解决中的学习特征,从而勾勒出CT和MT如何以互补或不匹配的方式出现的大图景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Educational Computing Research
Journal of Educational Computing Research EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
11.90
自引率
6.20%
发文量
69
期刊介绍: The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信