{"title":"Finding the Age and Education Level of Bulgarian-Speaking Internet Users Using Keystroke Dynamics","authors":"Denitsa Grunova, Ioannis Tsimperidis","doi":"10.3390/eng4040154","DOIUrl":null,"url":null,"abstract":"The rapid development of information and communication technologies and the widespread use of the Internet has made it imperative to implement advanced user authentication methods based on the analysis of behavioural biometric data. In contrast to traditional authentication techniques, such as the simple use of passwords, these new methods face the challenge of authenticating users at more complex levels, even after the initial verification. This is particularly important as it helps to address risks such as the possibility of forgery and the disclosure of personal information to unauthorised individuals. In this study, the use of keystroke dynamics has been chosen as a biometric, which is the way a user uses the keyboard. Specifically, a number of Bulgarian-speaking users have been recorded during their daily keyboard use, and then a system has been implemented which, with the help of machine learning models, recognises certain acquired or intrinsic characteristics in order to reveal part of their identity. The results show that users can be categorised using keystroke dynamics, in terms of the age group they belong to and in terms of their educational level, with high accuracy rates, which is a strong indication for the creation of applications to enhance user security and facilitate their use of Internet services.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"526 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4040154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of information and communication technologies and the widespread use of the Internet has made it imperative to implement advanced user authentication methods based on the analysis of behavioural biometric data. In contrast to traditional authentication techniques, such as the simple use of passwords, these new methods face the challenge of authenticating users at more complex levels, even after the initial verification. This is particularly important as it helps to address risks such as the possibility of forgery and the disclosure of personal information to unauthorised individuals. In this study, the use of keystroke dynamics has been chosen as a biometric, which is the way a user uses the keyboard. Specifically, a number of Bulgarian-speaking users have been recorded during their daily keyboard use, and then a system has been implemented which, with the help of machine learning models, recognises certain acquired or intrinsic characteristics in order to reveal part of their identity. The results show that users can be categorised using keystroke dynamics, in terms of the age group they belong to and in terms of their educational level, with high accuracy rates, which is a strong indication for the creation of applications to enhance user security and facilitate their use of Internet services.