Marimuthu Mohan Raja, Velusamy Vijayakumar, Juan J. Nieto, Sumati Kumari Panda, Anurag Shukla, Kottakkaran Sooppy Nisar
{"title":"An analysis on the approximate controllability results for Caputo fractional hemivariational inequalities of order 1 < r < 2 using sectorial operators","authors":"Marimuthu Mohan Raja, Velusamy Vijayakumar, Juan J. Nieto, Sumati Kumari Panda, Anurag Shukla, Kottakkaran Sooppy Nisar","doi":"10.15388/namc.2023.28.33429","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the effect of hemivariational inequalities on the approximate controllability of Caputo fractional differential systems. The main results of this study are tested by using multivalued maps, sectorial operators of type (P, η, r, γ ), fractional calculus, and the fixed point theorem. Initially, we introduce the idea of mild solution for fractional hemivariational inequalities. Next, the approximate controllability results of semilinear control problems were then established. Moreover, we will move on to the system involving nonlocal conditions. Finally, an example is provided in support of the main results we acquired.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":"51 8","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.33429","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the effect of hemivariational inequalities on the approximate controllability of Caputo fractional differential systems. The main results of this study are tested by using multivalued maps, sectorial operators of type (P, η, r, γ ), fractional calculus, and the fixed point theorem. Initially, we introduce the idea of mild solution for fractional hemivariational inequalities. Next, the approximate controllability results of semilinear control problems were then established. Moreover, we will move on to the system involving nonlocal conditions. Finally, an example is provided in support of the main results we acquired.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.