Role of geochemical reactions on caprock integrity during underground hydrogen storage

Lingping Zeng, Stephanie Vialle, Jonathan Ennis-King, Lionel Esteban, Mohammad Sarmadivaleh, Joel Sarout, Jeremie Dautriat, Ausama Giwelli, Quan Xie
{"title":"Role of geochemical reactions on caprock integrity during underground hydrogen storage","authors":"Lingping Zeng, Stephanie Vialle, Jonathan Ennis-King, Lionel Esteban, Mohammad Sarmadivaleh, Joel Sarout, Jeremie Dautriat, Ausama Giwelli, Quan Xie","doi":"10.1016/j.est.2023.107414","DOIUrl":null,"url":null,"abstract":"Underground hydrogen storage in depleted gas reservoirs is a promising and economical option for large-scale renewable energy storage to achieve net-zero carbon emission. While caprock plays an important role in sealing capacity, current knowledge is still limited on the effect of H2-brine-rock geochemical interactions on caprock integrity, raising concerns about the viability of long-term UHS. To address this problem, we developed kinetic batch models to characterize the time-dependent redox-reactions which are unique for underground hydrogen storage. This is combined with analytical estimates for the extent of hydrogen penetration into caprock. Our results show that the dissolution degrees of all tested minerals in three types of shales are <1 % in 30 years, indicating a strong caprock integrity and containment ability during underground hydrogen storage from a geochemical perspective. Reactive transport calculations indicate that hydrogen only affects a few metres of the caprock above the reservoir, so that storage integrity of thick caprocks will be unaffected. Similarly, the overall amount of hydrogen penetrating into caprock is likely to be a tiny fraction of the amount stored, typically much <1 %. Overall, our results suggest that H2-brine-shale geochemical interactions may not compromise caprock integrity during underground hydrogen storage.","PeriodicalId":94331,"journal":{"name":"Journal of energy storage","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.est.2023.107414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Underground hydrogen storage in depleted gas reservoirs is a promising and economical option for large-scale renewable energy storage to achieve net-zero carbon emission. While caprock plays an important role in sealing capacity, current knowledge is still limited on the effect of H2-brine-rock geochemical interactions on caprock integrity, raising concerns about the viability of long-term UHS. To address this problem, we developed kinetic batch models to characterize the time-dependent redox-reactions which are unique for underground hydrogen storage. This is combined with analytical estimates for the extent of hydrogen penetration into caprock. Our results show that the dissolution degrees of all tested minerals in three types of shales are <1 % in 30 years, indicating a strong caprock integrity and containment ability during underground hydrogen storage from a geochemical perspective. Reactive transport calculations indicate that hydrogen only affects a few metres of the caprock above the reservoir, so that storage integrity of thick caprocks will be unaffected. Similarly, the overall amount of hydrogen penetrating into caprock is likely to be a tiny fraction of the amount stored, typically much <1 %. Overall, our results suggest that H2-brine-shale geochemical interactions may not compromise caprock integrity during underground hydrogen storage.
地下储氢过程中地球化学反应对盖层完整性的影响
枯竭气藏地下储氢是实现净零碳排放的大规模可再生能源存储的一种有前途和经济的选择。尽管盖层在密封能力方面发挥着重要作用,但目前对h2 -卤水-岩石地球化学相互作用对盖层完整性的影响的了解仍然有限,这引起了人们对长期UHS可行性的担忧。为了解决这个问题,我们开发了动力学批模型来表征地下储氢特有的随时间的氧化还原反应。这与氢渗透到盖层的程度的分析估计相结合。结果表明,三种类型页岩30年的溶蚀度均小于1%,从地球化学角度看,具有较强的储氢盖层完整性和储氢能力。反应输运计算表明,氢只影响储层上方几米的盖层,因此厚盖层的储存完整性将不受影响。同样,穿透盖层的氢气总量可能只是储存量的一小部分,通常远小于1%。总的来说,我们的研究结果表明,在地下储氢过程中,h2 -卤水-页岩地球化学相互作用可能不会损害盖层的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信