Biomagnetism: Insights Into Magnetic Minerals Produced by Microorganisms

IF 2.2 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
James M. Byrne, Matthieu Amor
{"title":"Biomagnetism: Insights Into Magnetic Minerals Produced by Microorganisms","authors":"James M. Byrne, Matthieu Amor","doi":"10.2138/gselements.19.4.208","DOIUrl":null,"url":null,"abstract":"Biomagnetism describes the biological origin of magnetism within living organisms. This phenomenon occurs due to the formation of iron-based minerals that exhibit magnetic ordering at room temperature. Perhaps the most studied form of biomagnetism originates in bacteria, especially magnetotactic bacteria that produce internal magnetite and greigite grains and iron-reducing bacteria that produce magnetite nanoparticles externally as a byproduct of iron respiration. These bacteria likely contribute to a significant proportion of environmental magnetite. The emergence of biomagnetism remains unclear, although it is thought that magnetotactic bacteria evolved this mechanism several billion years ago. Understanding how and why micro-organisms generate biomagnetism is helping to shed light on the origin of life on Earth and potentially on other planets. Biomagnetism is also of broad interest to industrial and environmental applications.","PeriodicalId":11643,"journal":{"name":"Elements","volume":"21 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2138/gselements.19.4.208","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Biomagnetism describes the biological origin of magnetism within living organisms. This phenomenon occurs due to the formation of iron-based minerals that exhibit magnetic ordering at room temperature. Perhaps the most studied form of biomagnetism originates in bacteria, especially magnetotactic bacteria that produce internal magnetite and greigite grains and iron-reducing bacteria that produce magnetite nanoparticles externally as a byproduct of iron respiration. These bacteria likely contribute to a significant proportion of environmental magnetite. The emergence of biomagnetism remains unclear, although it is thought that magnetotactic bacteria evolved this mechanism several billion years ago. Understanding how and why micro-organisms generate biomagnetism is helping to shed light on the origin of life on Earth and potentially on other planets. Biomagnetism is also of broad interest to industrial and environmental applications.
生物磁学:微生物产生的磁性矿物的见解
生物磁学描述了生物体内磁性的生物学起源。这种现象的发生是由于铁基矿物的形成在室温下表现出磁性有序。研究最多的生物磁性形式可能源于细菌,尤其是在内部产生磁铁矿和灰长铁矿颗粒的趋磁细菌,以及作为铁呼吸副产物在外部产生磁铁矿纳米颗粒的铁还原细菌。这些细菌可能是环境磁铁矿的重要组成部分。生物磁学的出现尚不清楚,尽管人们认为趋磁细菌在几十亿年前就进化出了这种机制。了解微生物产生生物磁性的方式和原因有助于揭示地球上以及其他行星上生命的起源。生物磁学在工业和环境应用中也引起了广泛的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Elements
Elements 地学-地球化学与地球物理
CiteScore
7.20
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: Elements is an international magazine of mineralogy, petrology, and geochemistry. Published bimonthly, every issue explores a theme of broad and current interest. Elements publishes invited peer-reviewed articles for each thematic collection of papers. Topics of interest can be proposed to the editors who will review every proposal submitted. Elements also presents regular features including a opinion articles, calendar of events, short course announcements, awards, conference reports, policy news, as well as news of the 18 participating societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信