Koteswara Rao Jammula, Sagar, J.S., Madhu G.M., Pradipkumar Dixit
{"title":"Investigation of the Synthesis, Characterization and Properties of Nano Cu2Zr3O7 – HDPE Composite Sheets","authors":"Koteswara Rao Jammula, Sagar, J.S., Madhu G.M., Pradipkumar Dixit","doi":"10.25303/2709rjce920101","DOIUrl":null,"url":null,"abstract":"This study reports on the synthesis of Cu2Zr3O7 nanoparticles using the solution combustion method followed by the fabrication and characterization of micro-composite sheets of Cu2Zr3O7 - HDPE. The characterization was performed using SEM, XRD and EDX analysis which demonstrated the effects of nano-sized Cu2Zr3O7 particles on the crystallinity and surface morphology of the fillers and elemental analysis using the EDX method. The dielectric behavior of the composite was investigated using an Impedance Analyzer. The composite's tensile strength was increased as evidenced by 34% increase in Young's modulus compared to blank HDPE for the sample with 1.5 wt% nanofiller loading. The results indicated that the dielectric constant increased as the frequency decreased, with higher values observed at 10 MHz. However, this trend was less pronounced at reduced filler loadings. The loss tangent initially dropped abruptly and then gradually as the frequency increased between 4 Hz and 1 MHz. The addition of Cu2Zr3O7 nanoparticles resulted in increased conductivity at higher frequencies compared to pure HDPE, with no significant frequency dependency observed at lower frequencies.","PeriodicalId":21012,"journal":{"name":"Research Journal of Chemistry and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Chemistry and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25303/2709rjce920101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports on the synthesis of Cu2Zr3O7 nanoparticles using the solution combustion method followed by the fabrication and characterization of micro-composite sheets of Cu2Zr3O7 - HDPE. The characterization was performed using SEM, XRD and EDX analysis which demonstrated the effects of nano-sized Cu2Zr3O7 particles on the crystallinity and surface morphology of the fillers and elemental analysis using the EDX method. The dielectric behavior of the composite was investigated using an Impedance Analyzer. The composite's tensile strength was increased as evidenced by 34% increase in Young's modulus compared to blank HDPE for the sample with 1.5 wt% nanofiller loading. The results indicated that the dielectric constant increased as the frequency decreased, with higher values observed at 10 MHz. However, this trend was less pronounced at reduced filler loadings. The loss tangent initially dropped abruptly and then gradually as the frequency increased between 4 Hz and 1 MHz. The addition of Cu2Zr3O7 nanoparticles resulted in increased conductivity at higher frequencies compared to pure HDPE, with no significant frequency dependency observed at lower frequencies.