Investigation of Antibacterial Activity of Ag-CuO and Ag-ZnO Nanocomposites synthesized by Chemical Precipitation Method

Q4 Earth and Planetary Sciences
Priya P. Vengatesh, J. Jeyasundari, Athithan A.S. Sakthi, A. Naveena
{"title":"Investigation of Antibacterial Activity of Ag-CuO and Ag-ZnO Nanocomposites synthesized by Chemical Precipitation Method","authors":"Priya P. Vengatesh, J. Jeyasundari, Athithan A.S. Sakthi, A. Naveena","doi":"10.25303/2709rjce06068","DOIUrl":null,"url":null,"abstract":"In this present study, the synthesis of Ag-CuO and Ag-ZnO nanocomposites has been conducted. The individual Ag-CuO and Ag-ZnO nanocomposites were synthesized by using chemical precipitation method. The resulting particles were characterized by using UV-Visible, FTIR, XRD and SEM. The optical properties and band gap measurements were explored by UV-Visible spectroscopy. FTIR spectrum of the prepared nanocomposite revealed the presence of vibrational modes which were related to the Cu-O, Zn-O. The XRD analysis confirmed the structural purity of synthesized nanocomposites and the estimated crystallite size is 31.93 nm and 26.62 nm for Ag-CuO and Ag-ZnO nanocomposites respectively. The morphological features were explored by SEM analysis with deposition of Ag nanoparticles on the surface of metal oxide nanoparticles. The antibacterial activities of synthesized nanocomposites were tested on bacteria strains such as Escherichia coli (Gram -ve) and Staphylococcus aureus (Gram +ve) respectively through well diffusion method. The synthesized nanocomposite shows the higher efficacy against E.coli with an average diameter size of 17 mm zone of inhibition. This result suggests that Ag-CuO and Ag-ZnO nanocomposites can be used effectively against microbial growth. Therefore, the synthesized nanocomposite may be promising for the antibacterial agent in pharmaceutical applications.","PeriodicalId":21012,"journal":{"name":"Research Journal of Chemistry and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Chemistry and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25303/2709rjce06068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In this present study, the synthesis of Ag-CuO and Ag-ZnO nanocomposites has been conducted. The individual Ag-CuO and Ag-ZnO nanocomposites were synthesized by using chemical precipitation method. The resulting particles were characterized by using UV-Visible, FTIR, XRD and SEM. The optical properties and band gap measurements were explored by UV-Visible spectroscopy. FTIR spectrum of the prepared nanocomposite revealed the presence of vibrational modes which were related to the Cu-O, Zn-O. The XRD analysis confirmed the structural purity of synthesized nanocomposites and the estimated crystallite size is 31.93 nm and 26.62 nm for Ag-CuO and Ag-ZnO nanocomposites respectively. The morphological features were explored by SEM analysis with deposition of Ag nanoparticles on the surface of metal oxide nanoparticles. The antibacterial activities of synthesized nanocomposites were tested on bacteria strains such as Escherichia coli (Gram -ve) and Staphylococcus aureus (Gram +ve) respectively through well diffusion method. The synthesized nanocomposite shows the higher efficacy against E.coli with an average diameter size of 17 mm zone of inhibition. This result suggests that Ag-CuO and Ag-ZnO nanocomposites can be used effectively against microbial growth. Therefore, the synthesized nanocomposite may be promising for the antibacterial agent in pharmaceutical applications.
化学沉淀法合成Ag-CuO和Ag-ZnO纳米复合材料的抗菌活性研究
本文研究了Ag-CuO和Ag-ZnO纳米复合材料的合成。采用化学沉淀法分别合成了Ag-CuO和Ag-ZnO纳米复合材料。通过紫外可见光谱、红外光谱、x射线衍射和扫描电镜等手段对所得颗粒进行了表征。利用紫外-可见光谱法对其光学性质和带隙测量进行了研究。制备的纳米复合材料的FTIR光谱显示存在与Cu-O, Zn-O相关的振动模式。XRD分析证实了合成的纳米复合材料的结构纯度,估计Ag-CuO和Ag-ZnO纳米复合材料的晶粒尺寸分别为31.93 nm和26.62 nm。通过扫描电镜分析银纳米颗粒沉积在金属氧化物纳米颗粒表面的形貌特征。采用孔扩散法对合成的纳米复合材料分别对大肠杆菌(Gram -ve)和金黄色葡萄球菌(Gram +ve)的抑菌活性进行了测试。合成的纳米复合材料对大肠杆菌具有较高的抑制作用,平均直径为17 mm。这表明Ag-CuO和Ag-ZnO纳米复合材料可以有效地抑制微生物的生长。因此,所合成的纳米复合材料在抗菌药物领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信