A Driver Fatigue Detection Algorithm Based on Dynamic Tracking of Small Facial Targets Using YOLOv7

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shugang LIU, Yujie WANG, Qiangguo YU, Jie ZHAN, Hongli LIU, Jiangtao LIU
{"title":"A Driver Fatigue Detection Algorithm Based on Dynamic Tracking of Small Facial Targets Using YOLOv7","authors":"Shugang LIU, Yujie WANG, Qiangguo YU, Jie ZHAN, Hongli LIU, Jiangtao LIU","doi":"10.1587/transinf.2023edp7093","DOIUrl":null,"url":null,"abstract":"Driver fatigue detection has become crucial in vehicle safety technology. Achieving high accuracy and real-time performance in detecting driver fatigue is paramount. In this paper, we propose a novel driver fatigue detection algorithm based on dynamic tracking of Facial Eyes and Yawning using YOLOv7, named FEY-YOLOv7. The Coordinate Attention module is inserted into YOLOv7 to enhance its dynamic tracking accuracy by focusing on coordinate information. Additionally, a small target detection head is incorporated into the network architecture to promote the feature extraction ability of small facial targets such as eyes and mouth. In terms of compution, the YOLOv7 network architecture is significantly simplified to achieve high detection speed. Using the proposed PERYAWN algorithm, driver status is labeled and detected by four classes: open_eye, closed_eye, open_mouth, and closed_mouth. Furthermore, the Guided Image Filtering algorithm is employed to enhance image details. The proposed FEY-YOLOv7 is trained and validated on RGB-infrared datasets. The results show that FEY-YOLOv7 has achieved mAP of 0.983 and FPS of 101. This indicates that FEY-YOLOv7 is superior to state-of-the-art methods in accuracy and speed, providing an effective and practical solution for image-based driver fatigue detection.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2023edp7093","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Driver fatigue detection has become crucial in vehicle safety technology. Achieving high accuracy and real-time performance in detecting driver fatigue is paramount. In this paper, we propose a novel driver fatigue detection algorithm based on dynamic tracking of Facial Eyes and Yawning using YOLOv7, named FEY-YOLOv7. The Coordinate Attention module is inserted into YOLOv7 to enhance its dynamic tracking accuracy by focusing on coordinate information. Additionally, a small target detection head is incorporated into the network architecture to promote the feature extraction ability of small facial targets such as eyes and mouth. In terms of compution, the YOLOv7 network architecture is significantly simplified to achieve high detection speed. Using the proposed PERYAWN algorithm, driver status is labeled and detected by four classes: open_eye, closed_eye, open_mouth, and closed_mouth. Furthermore, the Guided Image Filtering algorithm is employed to enhance image details. The proposed FEY-YOLOv7 is trained and validated on RGB-infrared datasets. The results show that FEY-YOLOv7 has achieved mAP of 0.983 and FPS of 101. This indicates that FEY-YOLOv7 is superior to state-of-the-art methods in accuracy and speed, providing an effective and practical solution for image-based driver fatigue detection.
基于YOLOv7人脸小目标动态跟踪的驾驶员疲劳检测算法
驾驶员疲劳检测已成为汽车安全技术的重要组成部分。实现驾驶员疲劳检测的高精度和实时性是至关重要的。本文提出了一种基于YOLOv7动态跟踪面部眼睛和打哈欠的驾驶员疲劳检测算法,命名为FEY-YOLOv7。在YOLOv7中插入坐标关注模块,通过对坐标信息的关注,提高YOLOv7的动态跟踪精度。此外,在网络架构中加入了一个小目标检测头,提高了面部小目标(如眼睛和嘴巴)的特征提取能力。在计算方面,YOLOv7网络架构大大简化,实现了较高的检测速度。使用提出的PERYAWN算法,驱动程序状态被标记和检测为四个类:open_eye, close_eye, open_mouth和close_mouth。在此基础上,采用引导图像滤波算法增强图像细节。提出的FEY-YOLOv7在rgb红外数据集上进行了训练和验证。结果表明,FEY-YOLOv7的mAP值为0.983,FPS值为101。这表明FEY-YOLOv7在准确性和速度上都优于最先进的方法,为基于图像的驾驶员疲劳检测提供了有效实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Transactions on Information and Systems
IEICE Transactions on Information and Systems 工程技术-计算机:软件工程
CiteScore
1.80
自引率
0.00%
发文量
238
审稿时长
5.0 months
期刊介绍: Published by The Institute of Electronics, Information and Communication Engineers Subject Area: Mathematics Physics Biology, Life Sciences and Basic Medicine General Medicine, Social Medicine, and Nursing Sciences Clinical Medicine Engineering in General Nanosciences and Materials Sciences Mechanical Engineering Electrical and Electronic Engineering Information Sciences Economics, Business & Management Psychology, Education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信