Umberto Saetti, Batin Bugday, Joseph F. Horn, Kenneth S. Brentner
{"title":"Linearized Models of the Coupled Rotorcraft Flight Dynamics and Acoustics for Real-Time Noise Prediction","authors":"Umberto Saetti, Batin Bugday, Joseph F. Horn, Kenneth S. Brentner","doi":"10.4050/jahs.69.022002","DOIUrl":null,"url":null,"abstract":"This article demonstrates the linearization of the coupled rotorcraft flight dynamics and aeroacoustics to provide real-time acoustic predictions in generalized maneuvering flight. To demonstrate the methodology, the study makes use of a nonlinear simulation model of a generic utility helicopter (PSUHeloSim) that is coupled with an aeroacoustic solver based on a marching cubes algorithm. A periodic equilibrium of the coupled rotorcraft flight dynamics and acoustics is first found at a desired flight condition using a modified harmonic balance trim solution method. Next, the nonlinear time-periodic dynamics are linearized about that periodic equilibrium and transformed into an equivalent higher order linear time-invariant system in harmonic decomposition form. Composite aeroacoustic measures are included as an output of this system. To speed up runtime and make control design tractable, the order of these harmonic decomposition models is reduced via residualization to an 8-state model where the states are representative of the rigid-body dynamics of the aircraft. This 8-state model is shown to provide accurate acoustic response predictions for small-amplitude pilot inputs and to abate runtime by a factor of approximately 104, thus enabling acoustic predictions in generalized maneuvering flight that are significantly faster than real time. The 8-state model is subsequently used to demonstrate the use of linear system tools for the dynamic analysis of the coupled rotorcraft flight dynamics and acoustics.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"59 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.69.022002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This article demonstrates the linearization of the coupled rotorcraft flight dynamics and aeroacoustics to provide real-time acoustic predictions in generalized maneuvering flight. To demonstrate the methodology, the study makes use of a nonlinear simulation model of a generic utility helicopter (PSUHeloSim) that is coupled with an aeroacoustic solver based on a marching cubes algorithm. A periodic equilibrium of the coupled rotorcraft flight dynamics and acoustics is first found at a desired flight condition using a modified harmonic balance trim solution method. Next, the nonlinear time-periodic dynamics are linearized about that periodic equilibrium and transformed into an equivalent higher order linear time-invariant system in harmonic decomposition form. Composite aeroacoustic measures are included as an output of this system. To speed up runtime and make control design tractable, the order of these harmonic decomposition models is reduced via residualization to an 8-state model where the states are representative of the rigid-body dynamics of the aircraft. This 8-state model is shown to provide accurate acoustic response predictions for small-amplitude pilot inputs and to abate runtime by a factor of approximately 104, thus enabling acoustic predictions in generalized maneuvering flight that are significantly faster than real time. The 8-state model is subsequently used to demonstrate the use of linear system tools for the dynamic analysis of the coupled rotorcraft flight dynamics and acoustics.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine