Lipschitzian norms and functional inequalities for birth-death processes

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Wei Liu
{"title":"Lipschitzian norms and functional inequalities for birth-death processes","authors":"Wei Liu","doi":"10.3934/dcdsb.2023177","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a birth-death process with generator $ \\mathcal{L} $ and reversible invariant probability measure $ \\pi. $ We identify explicitly the Lipschitzian norm of the solution of the Poisson equation $ -\\mathcal{L} G = g-\\pi(g) $ for $ |g|\\le\\varphi $. This leads to some transportation-information inequalities, concentration inequalities and Cheeger-type isoperimetric inequalities. Several examples are provided to illustrate the results.","PeriodicalId":51015,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series B","volume":"16 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdsb.2023177","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a birth-death process with generator $ \mathcal{L} $ and reversible invariant probability measure $ \pi. $ We identify explicitly the Lipschitzian norm of the solution of the Poisson equation $ -\mathcal{L} G = g-\pi(g) $ for $ |g|\le\varphi $. This leads to some transportation-information inequalities, concentration inequalities and Cheeger-type isoperimetric inequalities. Several examples are provided to illustrate the results.
出生-死亡过程的Lipschitzian范数和功能不等式
本文考虑了一个具有生成器$ \mathcal{L} $和可逆不变概率测度$ \pi. $的生-死过程。我们明确地确定了$ |g|\le\varphi $的泊松方程$ -\mathcal{L} G = g-\pi(g) $解的Lipschitzian范数。这导致了一些运输信息不平等、浓度不平等和cheeger型等周不等式。提供了几个例子来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
216
审稿时长
6 months
期刊介绍: Centered around dynamics, DCDS-B is an interdisciplinary journal focusing on the interactions between mathematical modeling, analysis and scientific computations. The mission of the Journal is to bridge mathematics and sciences by publishing research papers that augment the fundamental ways we interpret, model and predict scientific phenomena. The Journal covers a broad range of areas including chemical, engineering, physical and life sciences. A more detailed indication is given by the subject interests of the members of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信