Fractional integral associated with the Schrödinger operators on variable exponent space

IF 1 4区 数学 Q1 MATHEMATICS
Huali Wang, Ping Li
{"title":"Fractional integral associated with the Schrödinger operators on variable exponent space","authors":"Huali Wang, Ping Li","doi":"10.3934/era.2023345","DOIUrl":null,"url":null,"abstract":"<abstract><p>Let $ \\mathcal{L} = -\\Delta+V $ be the Schrödinger operators on $ \\mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \\geq \\frac{n}{2} $. We prove the boundedness of fractional integral operator $ \\mathcal{I}_\\alpha $ related to the Schrödinger operators $ \\mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"31 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023345","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $ \mathcal{L} = -\Delta+V $ be the Schrödinger operators on $ \mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \geq \frac{n}{2} $. We prove the boundedness of fractional integral operator $ \mathcal{I}_\alpha $ related to the Schrödinger operators $ \mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.

变指数空间上与Schrödinger算子相关的分数积分
&lt;abstract&gt;&lt; &gt;设$ \mathcal{L} = -\Delta+V $为$ \mathbb{R}^n $上的Schrödinger运算符,其非负势$ V $对于某些$ q \geq \frac{n}{2} $属于反向Hölder类$ RH_q $。证明了从强、弱变指数Lebesgue空间到合适的变指数Lipschitz型空间中与Schrödinger算子$ \mathcal{L} $相关的分数阶积分算子$ \mathcal{I}_\alpha $的有界性。&lt;/p&gt;&lt;/abstract&gt;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信