{"title":"Fractional integral associated with the Schrödinger operators on variable exponent space","authors":"Huali Wang, Ping Li","doi":"10.3934/era.2023345","DOIUrl":null,"url":null,"abstract":"<abstract><p>Let $ \\mathcal{L} = -\\Delta+V $ be the Schrödinger operators on $ \\mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \\geq \\frac{n}{2} $. We prove the boundedness of fractional integral operator $ \\mathcal{I}_\\alpha $ related to the Schrödinger operators $ \\mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"31 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023345","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $ \mathcal{L} = -\Delta+V $ be the Schrödinger operators on $ \mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \geq \frac{n}{2} $. We prove the boundedness of fractional integral operator $ \mathcal{I}_\alpha $ related to the Schrödinger operators $ \mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.