Multimedia data-concealing method on characteristic pictures using convolutional neural network

Q4 Computer Science
R. Regin, S. Suman Rajest, Karthikeyan Chinnusamy, Bhopendra Singh, T. Shynu, R. Steffi
{"title":"Multimedia data-concealing method on characteristic pictures using convolutional neural network","authors":"R. Regin, S. Suman Rajest, Karthikeyan Chinnusamy, Bhopendra Singh, T. Shynu, R. Steffi","doi":"10.1504/ijsse.2023.134432","DOIUrl":null,"url":null,"abstract":"Images are now classified using picture steganography. A compelling image's attributes can change when it is sent across an unreliable open system. Information disguise incorporates the important message into everyday mediums, including images, audio, video, and text. Primary media relay the main message. The media approach should not undermine the main message. We retrieve the sent key message. Use perplexing surfaces to confirm message obscurity. Safe hashing verifies ROI's cryptographic hash output (SHA). The discrete wavelet transform will add hash esteem (H) to RONI. Automated guidelines pick complex surface placements. The hash value increment demonstrates the validity of the image. The hash capacity would not match if altered. A changed natural image is pumped into a conventional-looking image using spatial bidirectional steganography. Convolutional neural network (CNN) technology was used for the secret message concealment during this transmission. Complex texture areas aid object detection rules. Steganography recovered the block's message. The algorithm improves accuracy in experiments. The exploratory study found the technique promotes vigour, lust, and security.","PeriodicalId":39249,"journal":{"name":"International Journal of System of Systems Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System of Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijsse.2023.134432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Images are now classified using picture steganography. A compelling image's attributes can change when it is sent across an unreliable open system. Information disguise incorporates the important message into everyday mediums, including images, audio, video, and text. Primary media relay the main message. The media approach should not undermine the main message. We retrieve the sent key message. Use perplexing surfaces to confirm message obscurity. Safe hashing verifies ROI's cryptographic hash output (SHA). The discrete wavelet transform will add hash esteem (H) to RONI. Automated guidelines pick complex surface placements. The hash value increment demonstrates the validity of the image. The hash capacity would not match if altered. A changed natural image is pumped into a conventional-looking image using spatial bidirectional steganography. Convolutional neural network (CNN) technology was used for the secret message concealment during this transmission. Complex texture areas aid object detection rules. Steganography recovered the block's message. The algorithm improves accuracy in experiments. The exploratory study found the technique promotes vigour, lust, and security.
基于卷积神经网络的多媒体特征图像数据隐藏方法
现在使用图像隐写术对图像进行分类。当通过不可靠的开放系统发送引人注目的图像时,其属性可能会发生变化。信息伪装将重要信息整合到日常媒介中,包括图像、音频、视频和文本。主要媒体传递主要信息。媒体手段不应破坏主要信息。我们检索发送的密钥消息。使用令人费解的表面来确认消息的晦涩性。安全哈希验证ROI的加密哈希输出(SHA)。离散小波变换将哈希值(H)添加到RONI。自动指南选择复杂的表面位置。哈希值的增量证明了图像的有效性。如果更改,散列容量将不匹配。使用空间双向隐写术,将改变后的自然图像注入到常规图像中。在此传输过程中,使用卷积神经网络(CNN)技术对秘密信息进行隐藏。复杂的纹理区域有助于目标检测规则。隐写术恢复了数据块的信息。该算法在实验中提高了精度。探索性研究发现,这种技术能促进活力、欲望和安全感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of System of Systems Engineering
International Journal of System of Systems Engineering Computer Science-Information Systems
CiteScore
1.70
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信