Hyunjin You, Doochan Ko, Daniel Kim, Richard Wong, Inwhee Joe
{"title":"Dynamic access control method for SDP-based network environments","authors":"Hyunjin You, Doochan Ko, Daniel Kim, Richard Wong, Inwhee Joe","doi":"10.1186/s13638-023-02305-9","DOIUrl":null,"url":null,"abstract":"Abstract With online work environments and other distributed computing systems—such as cloud technologies or Internet of Things systems—becoming increasingly popular today due to the COVID-19 pandemic and general technological advances, the question of how to keep them secure has also become a pertinent concern. With this increased dependence on online systems for companies, cyberattacks have also been on the rise. To protect terminal devices, many companies have resorted to implementing a single boundary-defense model. This method has yielded positive results in securing the network from external threats, but it does not effectively protect network from internal security threats. With the vulnerabilities in the internal network security in mind, a dynamic access control method used with a zero-trust software-defined perimeter security model could be a viable solution. This study proposes a dynamic access control method using an engine with a new reward and penalty point-based system (RP Engine) and a dynamic task engine (DT Engine) for a zero-trust SDP security model.","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"112 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13638-023-02305-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With online work environments and other distributed computing systems—such as cloud technologies or Internet of Things systems—becoming increasingly popular today due to the COVID-19 pandemic and general technological advances, the question of how to keep them secure has also become a pertinent concern. With this increased dependence on online systems for companies, cyberattacks have also been on the rise. To protect terminal devices, many companies have resorted to implementing a single boundary-defense model. This method has yielded positive results in securing the network from external threats, but it does not effectively protect network from internal security threats. With the vulnerabilities in the internal network security in mind, a dynamic access control method used with a zero-trust software-defined perimeter security model could be a viable solution. This study proposes a dynamic access control method using an engine with a new reward and penalty point-based system (RP Engine) and a dynamic task engine (DT Engine) for a zero-trust SDP security model.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.