Blistering instability during capillary thinning of solutions of homo- and associative polymers

IF 3 2区 工程技术 Q2 MECHANICS
Andrey V. Subbotin, Alexander N. Semenov
{"title":"Blistering instability during capillary thinning of solutions of homo- and associative polymers","authors":"Andrey V. Subbotin, Alexander N. Semenov","doi":"10.1122/8.0000703","DOIUrl":null,"url":null,"abstract":"A linear stability analysis is carried out for viscoelastic filaments (formed by an unentangled polymer solution) during capillary thinning in the regime of unfolded polymer coils taking into account the relative motion of the solvent and the polymer. The conditions for the onset of filament instability with respect to axisymmetric modulation of its surface are found. The analysis is valid for relatively fast processes occurring at times shorter than the characteristic thinning time. It is shown that the growth rate of such pearling instability is determined by the osmotic modulus of the solution and the degree of orientation of macromolecules. In the case of nonassociative polymers, the instability develops (with the growth rate exceeding the rate of filament thinning) when the longitudinal length of stretched polymer chains exceeds the diameter of the filament. The theory is also applicable to soft gels and associative polymer solutions with very long relaxation times. The predictions of the theory are in agreement with experimental data.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"188 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1122/8.0000703","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A linear stability analysis is carried out for viscoelastic filaments (formed by an unentangled polymer solution) during capillary thinning in the regime of unfolded polymer coils taking into account the relative motion of the solvent and the polymer. The conditions for the onset of filament instability with respect to axisymmetric modulation of its surface are found. The analysis is valid for relatively fast processes occurring at times shorter than the characteristic thinning time. It is shown that the growth rate of such pearling instability is determined by the osmotic modulus of the solution and the degree of orientation of macromolecules. In the case of nonassociative polymers, the instability develops (with the growth rate exceeding the rate of filament thinning) when the longitudinal length of stretched polymer chains exceeds the diameter of the filament. The theory is also applicable to soft gels and associative polymer solutions with very long relaxation times. The predictions of the theory are in agreement with experimental data.
在毛细管稀释过程中的起泡不稳定性的同质和缔合聚合物的溶液
考虑溶剂和聚合物的相对运动,对未缠绕聚合物溶液形成的粘弹性细丝(由未缠绕聚合物溶液形成)进行了线性稳定性分析。发现了纤维表面轴对称调制引起纤维不稳定的条件。分析是有效的相对较快的过程发生在时间短于特征细化时间。结果表明,这种珠光不稳定性的增长速度是由溶液的渗透模量和大分子的取向程度决定的。在非缔合聚合物的情况下,当拉伸的聚合物链的纵向长度超过长丝的直径时,不稳定性就会发展(其增长速度超过长丝变薄的速度)。该理论也适用于具有很长松弛时间的软凝胶和缔合聚合物溶液。理论的预测与实验数据是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rheology
Journal of Rheology 物理-力学
CiteScore
6.60
自引率
12.10%
发文量
100
审稿时长
1 months
期刊介绍: The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信