{"title":"Complex Dynamics of a Predator-Prey System With Gompertz Growth and Herd Behavior","authors":"Rizwan Ahmed, M. B. Almatrafi","doi":"10.28924/2291-8639-21-2023-100","DOIUrl":null,"url":null,"abstract":"The complex dynamics of a predator-prey system in discrete time are studied. In this system, we consider the prey’s Gompertz growth and the square-root functional response. The existence of fixed points and stability are examined. Using the center manifold and bifurcation theory, we found that the system undergoes transcritical bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation. In addition, numerical examples are presented to illustrate the consistency of the analytical findings. The bifurcation diagrams show that the positive fixed point is stable if the death rate of the predator is greater than a threshold value. Biologically, it means that to prevent the predator population from growing uncontrollably and stability of the positive fixed point, the predator’s death rate should be greater than the threshold value.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
The complex dynamics of a predator-prey system in discrete time are studied. In this system, we consider the prey’s Gompertz growth and the square-root functional response. The existence of fixed points and stability are examined. Using the center manifold and bifurcation theory, we found that the system undergoes transcritical bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation. In addition, numerical examples are presented to illustrate the consistency of the analytical findings. The bifurcation diagrams show that the positive fixed point is stable if the death rate of the predator is greater than a threshold value. Biologically, it means that to prevent the predator population from growing uncontrollably and stability of the positive fixed point, the predator’s death rate should be greater than the threshold value.