Do NBA teams avoid trading within their own division?

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
jimi adams, Michał Bojanowski
{"title":"Do NBA teams avoid trading within their own division?","authors":"jimi adams, Michał Bojanowski","doi":"10.1017/nws.2023.18","DOIUrl":null,"url":null,"abstract":"Abstract Within US professional sports, trades within one’s own division are often perceived to be disadvantageous. We ask how common this practice is. To examine this question, we construct a date-stamped network of all trades in the National Basketball Association between June 1976 and May 2019. We then use season-specific weighted exponential random graph models to estimate the likelihood of teams avoiding within-division trade partners, and how consistent that pattern is across the observed period. In addition to the empirical question, this analysis serves to demonstrate the necessity and difficulty of constructing the proper baseline for statistical comparison. We find limited-to-no support for the popular perception.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"66 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2023.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Within US professional sports, trades within one’s own division are often perceived to be disadvantageous. We ask how common this practice is. To examine this question, we construct a date-stamped network of all trades in the National Basketball Association between June 1976 and May 2019. We then use season-specific weighted exponential random graph models to estimate the likelihood of teams avoiding within-division trade partners, and how consistent that pattern is across the observed period. In addition to the empirical question, this analysis serves to demonstrate the necessity and difficulty of constructing the proper baseline for statistical comparison. We find limited-to-no support for the popular perception.
NBA球队会避免在自己的赛区进行交易吗?
在美国职业体育运动中,自己部门内的交易通常被认为是不利的。我们问这种做法有多普遍。为了研究这个问题,我们构建了一个带有日期戳的网络,其中包含了1976年6月至2019年5月期间nba的所有交易。然后,我们使用特定季节加权指数随机图模型来估计团队避免内部交易伙伴的可能性,以及该模式在整个观察期间的一致性。除了实证问题外,这一分析还证明了为统计比较构建适当基线的必要性和难度。我们发现对这种普遍看法的支持有限,甚至没有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信