Building a Recommender System to Predict the Shape of Bacteria in Urine Cytobacteriological Examination Using Machine Learning

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mohammed Amine Lafraxo, Hinde Hami, Tarik Merrakchi, Ali Azghar, Ahmed Remaida, Mohammed Ouadoud, Adil Maleb, Abdelmajid Soulaymani
{"title":"Building a Recommender System to Predict the Shape of Bacteria in Urine Cytobacteriological Examination Using Machine Learning","authors":"Mohammed Amine Lafraxo, Hinde Hami, Tarik Merrakchi, Ali Azghar, Ahmed Remaida, Mohammed Ouadoud, Adil Maleb, Abdelmajid Soulaymani","doi":"10.3991/ijoe.v19i13.36185","DOIUrl":null,"url":null,"abstract":"This study aimed to build a recommender system that predicts the shape of bacteria for biological requests of urine cytobacteriological examination (UCBE) using machine learning techniques, to reduce the time taken to identify the shape of bacteria (Cocci or Bacilli). We used different methods and techniques in the process: Unified Modelling Language (UML) was used for digital design architecture, Rstudio tool with R programming language for system development, and Random Forest (RF) algorithm for the prediction. Experimental results showed that the time needed to identify the shape of bacteria is decreased, and bacilli bacteria are better recognized by the algorithm with an error rate of 3%. In addition to that, the proposed recommender system allows biologists to validate and correct the prediction and improve the accuracy of the classification algorithm used in the future.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i13.36185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to build a recommender system that predicts the shape of bacteria for biological requests of urine cytobacteriological examination (UCBE) using machine learning techniques, to reduce the time taken to identify the shape of bacteria (Cocci or Bacilli). We used different methods and techniques in the process: Unified Modelling Language (UML) was used for digital design architecture, Rstudio tool with R programming language for system development, and Random Forest (RF) algorithm for the prediction. Experimental results showed that the time needed to identify the shape of bacteria is decreased, and bacilli bacteria are better recognized by the algorithm with an error rate of 3%. In addition to that, the proposed recommender system allows biologists to validate and correct the prediction and improve the accuracy of the classification algorithm used in the future.
利用机器学习构建尿细胞细菌学检查中预测细菌形状的推荐系统
本研究旨在建立一个推荐系统,该系统使用机器学习技术预测尿液细胞细菌学检查(UCBE)生物学要求的细菌形状,以减少识别细菌形状(球菌或杆菌)所需的时间。我们在过程中使用了不同的方法和技术:统一建模语言(UML)用于数字设计架构,Rstudio工具与R编程语言进行系统开发,随机森林(RF)算法进行预测。实验结果表明,该算法减少了识别细菌形状所需的时间,对杆菌类细菌的识别效果较好,错误率为3%。此外,提出的推荐系统允许生物学家验证和纠正预测,并提高未来使用的分类算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信