Antisquares and Critical Exponents

IF 0.7 4区 数学
Aseem Baranwal, James Currie, Lucas Mol, Pascal Ochem, Narad Rampersad, Jeffrey Shallit
{"title":"Antisquares and Critical Exponents","authors":"Aseem Baranwal, James Currie, Lucas Mol, Pascal Ochem, Narad Rampersad, Jeffrey Shallit","doi":"10.46298/dmtcs.10063","DOIUrl":null,"url":null,"abstract":"The (bitwise) complement $\\overline{x}$ of a binary word $x$ is obtained by changing each $0$ in $x$ to $1$ and vice versa. An $\\textit{antisquare}$ is a nonempty word of the form $x\\, \\overline{x}$. In this paper, we study infinite binary words that do not contain arbitrarily large antisquares. For example, we show that the repetition threshold for the language of infinite binary words containing exactly two distinct antisquares is $(5+\\sqrt{5})/2$. We also study repetition thresholds for related classes, where \"two\" in the previous sentence is replaced by a larger number. We say a binary word is $\\textit{good}$ if the only antisquares it contains are $01$ and $10$. We characterize the minimal antisquares, that is, those words that are antisquares but all proper factors are good. We determine the growth rate of the number of good words of length $n$ and determine the repetition threshold between polynomial and exponential growth for the number of good words.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.10063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The (bitwise) complement $\overline{x}$ of a binary word $x$ is obtained by changing each $0$ in $x$ to $1$ and vice versa. An $\textit{antisquare}$ is a nonempty word of the form $x\, \overline{x}$. In this paper, we study infinite binary words that do not contain arbitrarily large antisquares. For example, we show that the repetition threshold for the language of infinite binary words containing exactly two distinct antisquares is $(5+\sqrt{5})/2$. We also study repetition thresholds for related classes, where "two" in the previous sentence is replaced by a larger number. We say a binary word is $\textit{good}$ if the only antisquares it contains are $01$ and $10$. We characterize the minimal antisquares, that is, those words that are antisquares but all proper factors are good. We determine the growth rate of the number of good words of length $n$ and determine the repetition threshold between polynomial and exponential growth for the number of good words.
反平方和临界指数
通过将$x$中的每个$0$更改为$1$,可以获得二进制字$x$的(按位)补码$\overline{x}$,反之亦然。$\textit{antisquare}$是形式为$x\, \overline{x}$的非空单词。在本文中,我们研究了不包含任意大的反平方的无限二进制词。例如,我们证明了包含两个不同反平方的无限二进制词的语言的重复阈值是$(5+\sqrt{5})/2$。我们还研究了相关类的重复阈值,其中前一句中的“2”被替换为更大的数字。如果一个二进制词包含的反平方只有$01$和$10$,我们就说它是$\textit{good}$。我们描述最小反平方,也就是那些反平方但所有固有因子都是好的词。我们确定了长度为$n$的好词数量的增长率,并确定了好词数量的多项式增长和指数增长之间的重复阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信