Computation insight of modified thermal distribution of hybrid nanofluids in complex wavy channel: A comparative thermal approach for different nanofluid models
Imtiaz Ahmed, Shahid Hameed, Aamar Abbasi, Sami Ullah Khan, Waseh Farooq, Mohammed A. Almeshaal, Muapper Alhadri, Lioua Kolsi
{"title":"Computation insight of modified thermal distribution of hybrid nanofluids in complex wavy channel: A comparative thermal approach for different nanofluid models","authors":"Imtiaz Ahmed, Shahid Hameed, Aamar Abbasi, Sami Ullah Khan, Waseh Farooq, Mohammed A. Almeshaal, Muapper Alhadri, Lioua Kolsi","doi":"10.24200/sci.2023.60957.7075","DOIUrl":null,"url":null,"abstract":"Owing to enhanced thermal mechanism of nanomaterials, the researchers are continuously exploring the novel features of nanofluids and claiming multidisciplinary applications in solar systems, engineering processes, energy devices and automobile industries. The experimentally supported research proves that with interaction of different types of nanoparticles is more effective to enhance the thermal transportation phenomenon. Following such motivations in mind, the aim of present continuation is exploring the thermal impact of modified hybrid nanofluid model in complex vertical channel. Due to high thermal performances, copper (CuO), copper oxide (CuO) and aluminium oxide (Al_2 O_3) nanoparticles explore the thermal behavior of modified hybrid nanofluid model. The vertical channel confined the sinusoidal waves on walls. The flow phenomenon is based on peristaltic transport associated to the human body system. The consideration of small Reynolds number hypothesis and larger wavelength approach, the implication of problem has been done. The modeled equations are tackled with shooting technique. Various stream functions with applications of peristaltic transport phenomenon are developed. It is observed that heat transfer is larger in the curved channel as compared to the straight channel. The decomposition of modified hybrid nanoparticles is more effective to improve the heat transfer pattern more effectively.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"3 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.60957.7075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to enhanced thermal mechanism of nanomaterials, the researchers are continuously exploring the novel features of nanofluids and claiming multidisciplinary applications in solar systems, engineering processes, energy devices and automobile industries. The experimentally supported research proves that with interaction of different types of nanoparticles is more effective to enhance the thermal transportation phenomenon. Following such motivations in mind, the aim of present continuation is exploring the thermal impact of modified hybrid nanofluid model in complex vertical channel. Due to high thermal performances, copper (CuO), copper oxide (CuO) and aluminium oxide (Al_2 O_3) nanoparticles explore the thermal behavior of modified hybrid nanofluid model. The vertical channel confined the sinusoidal waves on walls. The flow phenomenon is based on peristaltic transport associated to the human body system. The consideration of small Reynolds number hypothesis and larger wavelength approach, the implication of problem has been done. The modeled equations are tackled with shooting technique. Various stream functions with applications of peristaltic transport phenomenon are developed. It is observed that heat transfer is larger in the curved channel as compared to the straight channel. The decomposition of modified hybrid nanoparticles is more effective to improve the heat transfer pattern more effectively.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.