Ali Namaei-kohal, Alireza Ardakani, Mahmoud Hassanlourad
{"title":"Cyclic and post-cyclic geocell pullout behavior in cohesionless soil","authors":"Ali Namaei-kohal, Alireza Ardakani, Mahmoud Hassanlourad","doi":"10.24200/sci.2023.60817.7002","DOIUrl":null,"url":null,"abstract":"As a geocell reinforced structure can be subjected to earthquake and pullout loads during its life time, it is obligatory to assess the pullout capacity and soil-geosynthetic interaction of geocell under cyclic loads. This research investigated the cyclic and post-cyclic pullout behavior of geocell in cohesionless soil using a series of 24 multi-stage pullout tests. The results indicated that the ultimate post-cyclic pullout load was less than the monotonic pullout load. This was the result of a reciprocating motion from loading caused by the interlock between the geocell infill soil and the surrounding material, which weakened and broke during the cyclic phase. It was found that, as the grain size of the soil increased, the interlocking strength increased and consequently the ultimate post cyclic pullout load increased. The soil particle size had a significant effect on the cumulative displacement during the cyclic phase. Furthermore, the increases in the loading amplitude and the number of cycles decreased the interlocking resistance of the infill soil with the surrounding material, which decreased the ultimate post-cyclic pullout load. The effect of the loading frequency likely depended on the geocell infill soil density.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"15 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.60817.7002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a geocell reinforced structure can be subjected to earthquake and pullout loads during its life time, it is obligatory to assess the pullout capacity and soil-geosynthetic interaction of geocell under cyclic loads. This research investigated the cyclic and post-cyclic pullout behavior of geocell in cohesionless soil using a series of 24 multi-stage pullout tests. The results indicated that the ultimate post-cyclic pullout load was less than the monotonic pullout load. This was the result of a reciprocating motion from loading caused by the interlock between the geocell infill soil and the surrounding material, which weakened and broke during the cyclic phase. It was found that, as the grain size of the soil increased, the interlocking strength increased and consequently the ultimate post cyclic pullout load increased. The soil particle size had a significant effect on the cumulative displacement during the cyclic phase. Furthermore, the increases in the loading amplitude and the number of cycles decreased the interlocking resistance of the infill soil with the surrounding material, which decreased the ultimate post-cyclic pullout load. The effect of the loading frequency likely depended on the geocell infill soil density.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.