{"title":"Numerical Investigation of the Heat Transfer and Peristaltic Flow Through a Asymmetric Channel Having Variable Viscosity and Electric Conductivity","authors":"Jamil Abbas Haider, Sana Gul, Sohail Nadeem","doi":"10.24200/sci.2023.60404.6783","DOIUrl":null,"url":null,"abstract":"The peristaltic flow of nanofluids is a topic of growing interest in fluid dynamics. This study investigates the effect of temperature-dependent viscosity and electric conductivity on the peristaltic flow of nanofluids. The mathematical model of the peristaltic flow is developed using the governing equations of continuity, momentum, and energy for a Newtonian fluid. Large wavelength and small Reynolds number assumptions are used to study peristaltic flow to simplify the equations of continuity, momentum, and energy. In this article, the nanofluids are assumed to be electrically conducting and temperature dependent, and the effects of Hartman number and Eckert number is studied. The resulting equations are solved using the Shooting Method. The results show that the temperature-dependent viscosity and electric conductivity significantly affect the peristaltic flow of nanofluids. The flow rate and pressure gradient decrease with increasing viscosity and conductivity while the temperature and heat transfer rate increase. Moreover, the nanofluid concentration and particle size significantly impact the flow characteristics. In conclusion, this study comprehensively analyses the peristaltic flow of nanofluids with temperature-dependent viscosity and electric conductivity. The results can be useful for understanding the behaviour of nanofluids in various applications, such as drug delivery systems, microfluidics, and thermal management.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"44 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.60404.6783","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The peristaltic flow of nanofluids is a topic of growing interest in fluid dynamics. This study investigates the effect of temperature-dependent viscosity and electric conductivity on the peristaltic flow of nanofluids. The mathematical model of the peristaltic flow is developed using the governing equations of continuity, momentum, and energy for a Newtonian fluid. Large wavelength and small Reynolds number assumptions are used to study peristaltic flow to simplify the equations of continuity, momentum, and energy. In this article, the nanofluids are assumed to be electrically conducting and temperature dependent, and the effects of Hartman number and Eckert number is studied. The resulting equations are solved using the Shooting Method. The results show that the temperature-dependent viscosity and electric conductivity significantly affect the peristaltic flow of nanofluids. The flow rate and pressure gradient decrease with increasing viscosity and conductivity while the temperature and heat transfer rate increase. Moreover, the nanofluid concentration and particle size significantly impact the flow characteristics. In conclusion, this study comprehensively analyses the peristaltic flow of nanofluids with temperature-dependent viscosity and electric conductivity. The results can be useful for understanding the behaviour of nanofluids in various applications, such as drug delivery systems, microfluidics, and thermal management.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.