{"title":"Border-collision bifurcations from stable fixed points to any number of coexisting chaotic attractors","authors":"D. J. W. Simpson","doi":"10.1080/10236198.2023.2265495","DOIUrl":null,"url":null,"abstract":"AbstractIn diverse physical systems stable oscillatory solutions devolve into more complicated solutions through border-collision bifurcations. Mathematically these occur when a stable fixed point of a piecewise-smooth map collides with a switching manifold as parameters are varied. The purpose of this paper is to highlight the extreme complexity possible in the subsequent dynamics. By perturbing instances of the n-dimensional border-collision normal form for which the nth iterate is a direct product of chaotic skew tent maps, it is shown that many chaotic attractors can arise. Burnside's lemma is used to count the attractors; chaoticity is proved by demonstrating that some iterate of the map is piecewise-expanding. The resulting transition from a stable fixed point to many coexisting chaotic attractors occurs throughout open subsets of parameter space and is not destroyed by higher order terms, hence can be expected to occur generically in mathematical models.Keywords: Piecewise-linearpiecewise-smoothborder-collision bifurcationrobust chaosBurnside's lemmaMathematics Subject Classifications: 37G3539A28 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Marsden Fund contract MAU1809, managed by Royal Society Te Apārangi. The author thanks Paul Glendinning and Chris Tuffley for discussions that helped improve the results.","PeriodicalId":15616,"journal":{"name":"Journal of Difference Equations and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Difference Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2265495","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
AbstractIn diverse physical systems stable oscillatory solutions devolve into more complicated solutions through border-collision bifurcations. Mathematically these occur when a stable fixed point of a piecewise-smooth map collides with a switching manifold as parameters are varied. The purpose of this paper is to highlight the extreme complexity possible in the subsequent dynamics. By perturbing instances of the n-dimensional border-collision normal form for which the nth iterate is a direct product of chaotic skew tent maps, it is shown that many chaotic attractors can arise. Burnside's lemma is used to count the attractors; chaoticity is proved by demonstrating that some iterate of the map is piecewise-expanding. The resulting transition from a stable fixed point to many coexisting chaotic attractors occurs throughout open subsets of parameter space and is not destroyed by higher order terms, hence can be expected to occur generically in mathematical models.Keywords: Piecewise-linearpiecewise-smoothborder-collision bifurcationrobust chaosBurnside's lemmaMathematics Subject Classifications: 37G3539A28 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Marsden Fund contract MAU1809, managed by Royal Society Te Apārangi. The author thanks Paul Glendinning and Chris Tuffley for discussions that helped improve the results.
期刊介绍:
Journal of Difference Equations and Applications presents state-of-the-art papers on difference equations and discrete dynamical systems and the academic, pure and applied problems in which they arise. The Journal is composed of original research, expository and review articles, and papers that present novel concepts in application and techniques.
The scope of the Journal includes all areas in mathematics that contain significant theory or applications in difference equations or discrete dynamical systems.