{"title":"Sixth-Order Compact Finite Difference Method for 2D Helmholtz Equations with Singular Sources and Reduced Pollution Effect","authors":"Qiwei Feng, Bin Han null, Michelle Michelle","doi":"10.4208/cicp.oa-2023-0062","DOIUrl":null,"url":null,"abstract":"Due to its highly oscillating solution, the Helmholtz equation is numerically challenging to solve. To obtain a reasonable solution, a mesh size that is much smaller than the reciprocal of the wavenumber is typically required (known as the pollution effect). High order schemes are desirable, because they are better in mitigating the pollution effect. In this paper, we present a high order compact finite difference method for 2D Helmholtz equations with singular sources, which can also handle any possible combinations of boundary conditions (Dirichlet, Neumann, and impedance) on a rectangular domain. Our method achieves a sixth order consistency for a constant wavenumber, and a fifth order consistency for a piecewise constant wavenumber. To reduce the pollution effect, we propose a new pollution minimization strategy that is based on the average truncation error of plane waves. Our numerical experiments demonstrate the superiority of our proposed finite difference scheme with reduced pollution effect to several state-of-the-art finite difference schemes, particularly in the critical pre-asymptotic region where $\\textsf{k} h$ is near $1$ with $\\textsf{k}$ being the wavenumber and $h$ the mesh size.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0062","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Due to its highly oscillating solution, the Helmholtz equation is numerically challenging to solve. To obtain a reasonable solution, a mesh size that is much smaller than the reciprocal of the wavenumber is typically required (known as the pollution effect). High order schemes are desirable, because they are better in mitigating the pollution effect. In this paper, we present a high order compact finite difference method for 2D Helmholtz equations with singular sources, which can also handle any possible combinations of boundary conditions (Dirichlet, Neumann, and impedance) on a rectangular domain. Our method achieves a sixth order consistency for a constant wavenumber, and a fifth order consistency for a piecewise constant wavenumber. To reduce the pollution effect, we propose a new pollution minimization strategy that is based on the average truncation error of plane waves. Our numerical experiments demonstrate the superiority of our proposed finite difference scheme with reduced pollution effect to several state-of-the-art finite difference schemes, particularly in the critical pre-asymptotic region where $\textsf{k} h$ is near $1$ with $\textsf{k}$ being the wavenumber and $h$ the mesh size.
期刊介绍:
Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.