Numerical Solutions of the Electromagnetic Scattering by Overfilled Cavities with Inhomogeneous Anisotropic Media

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Meiling Zhao, Jiahui He null, Liqun Wang
{"title":"Numerical Solutions of the Electromagnetic Scattering by Overfilled Cavities with Inhomogeneous Anisotropic Media","authors":"Meiling Zhao, Jiahui He null, Liqun Wang","doi":"10.4208/cicp.oa-2022-0104","DOIUrl":null,"url":null,"abstract":". In this paper, the electromagnetic scattering from overfilled cavities with inhomogeneous anisotropic media is investigated. To solve the scattering problem, a Petrov-Galerkin finite element interface method on non-body-fitted grids is presented. We reduce the infinite domain of scattering to a bounded domain problem by introducing a transparent boundary condition. The level set function is used to capture complex boundary and interface geometry that is not aligned with the mesh. Non-body-fitted grids allow us to save computational costs during mesh generation and significantly reduce the amount of computer memory required. The solution is built by connecting two linear polynomials across the interfaces to satisfy the jump conditions. The proposed method can handle matrix coefficients produced by permittivity and permeability tensors of anisotropic media. The final linear system is sparse, making it more suitable for most iterative methods. Numerical experiments show that the proposed method has good convergence and realizability. Meanwhile, we discover that the absorbing properties of anisotropic media clearly and positively influence the reduction of radar cross section. It has also been demonstrated that the method can achieve second-order accuracy.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"20 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2022-0104","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, the electromagnetic scattering from overfilled cavities with inhomogeneous anisotropic media is investigated. To solve the scattering problem, a Petrov-Galerkin finite element interface method on non-body-fitted grids is presented. We reduce the infinite domain of scattering to a bounded domain problem by introducing a transparent boundary condition. The level set function is used to capture complex boundary and interface geometry that is not aligned with the mesh. Non-body-fitted grids allow us to save computational costs during mesh generation and significantly reduce the amount of computer memory required. The solution is built by connecting two linear polynomials across the interfaces to satisfy the jump conditions. The proposed method can handle matrix coefficients produced by permittivity and permeability tensors of anisotropic media. The final linear system is sparse, making it more suitable for most iterative methods. Numerical experiments show that the proposed method has good convergence and realizability. Meanwhile, we discover that the absorbing properties of anisotropic media clearly and positively influence the reduction of radar cross section. It has also been demonstrated that the method can achieve second-order accuracy.
非均匀各向异性介质过填充腔电磁散射的数值解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信