Track Unevenness Prediction Based on Static Track Inspection Data Matching

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianpu Xi, Changle Zhou, Xuetao Qiao, Zhuolin Zhou, Laihua Luo, Qing Yang, Zexiang Zhao
{"title":"Track Unevenness Prediction Based on Static Track Inspection Data Matching","authors":"Jianpu Xi, Changle Zhou, Xuetao Qiao, Zhuolin Zhou, Laihua Luo, Qing Yang, Zexiang Zhao","doi":"10.1166/jno.2023.3439","DOIUrl":null,"url":null,"abstract":"A track static misalignment prediction model based on track median deviation is created using an IGA-BP neural network in order to precisely predict the trend of ballastless track static misalignment. The historical static track median deviation detection data are matched using actual compensation edit distance (ERP) to finish the correspondence processing of the original data. The precisely matched data are used to train the model, forecast irregularities in the track median, and compare results with other traditional prediction techniques. The outcomes demonstrate that the IGA-BP neural network can more accurately predict the nonlinear time series data development trend. In comparison to other prediction models, the IGA-BP neural network model’s average relative error and root mean square error are 0.091 and 0.110, respectively. The prediction accuracy is raised by between 43% and 60%, demonstrating the IGA-BP neural network model’s efficacy in predicting static upsets on ballastless tracks and presenting a workable strategy for track predictive maintenance.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":"33 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jno.2023.3439","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A track static misalignment prediction model based on track median deviation is created using an IGA-BP neural network in order to precisely predict the trend of ballastless track static misalignment. The historical static track median deviation detection data are matched using actual compensation edit distance (ERP) to finish the correspondence processing of the original data. The precisely matched data are used to train the model, forecast irregularities in the track median, and compare results with other traditional prediction techniques. The outcomes demonstrate that the IGA-BP neural network can more accurately predict the nonlinear time series data development trend. In comparison to other prediction models, the IGA-BP neural network model’s average relative error and root mean square error are 0.091 and 0.110, respectively. The prediction accuracy is raised by between 43% and 60%, demonstrating the IGA-BP neural network model’s efficacy in predicting static upsets on ballastless tracks and presenting a workable strategy for track predictive maintenance.
基于静态轨道检测数据匹配的轨道不均匀度预测
为了准确预测无砟轨道静态偏差趋势,利用IGA-BP神经网络建立了基于轨道中值偏差的轨道静态偏差预测模型。利用实际补偿编辑距离(ERP)对历史静态轨迹中值偏差检测数据进行匹配,完成对原始数据的对应处理。精确匹配的数据用于训练模型,预测轨道中位数的不规则性,并将结果与其他传统预测技术进行比较。结果表明,IGA-BP神经网络可以更准确地预测非线性时间序列数据的发展趋势。与其他预测模型相比,IGA-BP神经网络模型的平均相对误差和均方根误差分别为0.091和0.110。结果表明,IGA-BP神经网络模型对无砟轨道静态扰动的预测精度提高了43% ~ 60%,为轨道预测维修提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信