Asymptotic Probability Expansions for Random Elements in a Hilbert space

IF 0.6 Q3 MATHEMATICS
Victorien F. Konane, Claude Yaméogo, Wahabo Baguian
{"title":"Asymptotic Probability Expansions for Random Elements in a Hilbert space","authors":"Victorien F. Konane, Claude Yaméogo, Wahabo Baguian","doi":"10.37256/cm.4420232651","DOIUrl":null,"url":null,"abstract":"In this article, we approach a class of problems in probability theory, namely, the asymptotic expansion of probability. We consider an independent, identically distributed, and normalized stochastic process in a separable Hilbert space H, and associate it with the normalized partial sum.As a result, we built on the ball with a fixed center asymptotic expansion of non-uniform probabilities; our conditions on the moments are minimal, and the dependency of estimates on the covariance operator is expressed with the terms of the eigenvalue series. Likewise, the covariance operators of the random elements do not coincide. In the open ball set with fixed center a and radius , we estimate the optimal result of the Berry-Esseen type of the remainder, and the terms of the probability by the Fourier method.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":" 8","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we approach a class of problems in probability theory, namely, the asymptotic expansion of probability. We consider an independent, identically distributed, and normalized stochastic process in a separable Hilbert space H, and associate it with the normalized partial sum.As a result, we built on the ball with a fixed center asymptotic expansion of non-uniform probabilities; our conditions on the moments are minimal, and the dependency of estimates on the covariance operator is expressed with the terms of the eigenvalue series. Likewise, the covariance operators of the random elements do not coincide. In the open ball set with fixed center a and radius , we estimate the optimal result of the Berry-Esseen type of the remainder, and the terms of the probability by the Fourier method.
Hilbert空间中随机元素的渐近概率展开式
本文讨论概率论中的一类问题,即概率的渐近展开式。考虑可分离Hilbert空间H中一个独立的、同分布的、归一化的随机过程,并将其与归一化部分和联系起来。因此,我们建立了一个具有固定中心的球的非均匀概率渐近展开式;我们对矩的条件是最小的,并且估计对协方差算子的依赖用特征值级数的项表示。同样,随机元素的协方差算子也不重合。在中心a和半径固定的开放球集中,我们用傅里叶方法估计了剩余部分的Berry-Esseen类型的最优结果,以及概率项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信