{"title":"Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field","authors":"Mikhail Borovoi","doi":"10.5802/crmath.455","DOIUrl":null,"url":null,"abstract":"Let G be a connected reductive group over a number field F, and let S be a set (finite or infinite) of places of F. We give a necessary and sufficient condition for the surjectivity of the localization map from H 1 (F,G) to the “direct sum” of the sets H 1 (F v ,G) where v runs over S. In the appendices, we give a new construction of the abelian Galois cohomology of a reductive group over a field of arbitrary characteristic.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":" 4","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.455","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let G be a connected reductive group over a number field F, and let S be a set (finite or infinite) of places of F. We give a necessary and sufficient condition for the surjectivity of the localization map from H 1 (F,G) to the “direct sum” of the sets H 1 (F v ,G) where v runs over S. In the appendices, we give a new construction of the abelian Galois cohomology of a reductive group over a field of arbitrary characteristic.
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.