Scalable High-Quality Hypergraph Partitioning

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Lars Gottesbüren, Tobias Heuer, Nikolai Maas, Peter Sanders, Sebastian Schlag
{"title":"Scalable High-Quality Hypergraph Partitioning","authors":"Lars Gottesbüren, Tobias Heuer, Nikolai Maas, Peter Sanders, Sebastian Schlag","doi":"10.1145/3626527","DOIUrl":null,"url":null,"abstract":"Balanced hypergraph partitioning is an NP-hard problem with many applications, e.g., optimizing communication in distributed data placement problems. The goal is to place all nodes across k different blocks of bounded size, such that hyperedges span as few parts as possible. This problem is well-studied in sequential and distributed settings, but not in shared-memory. We close this gap by devising efficient and scalable shared-memory algorithms for all components employed in the best sequential solvers without compromises with regards to solution quality. This work presents the scalable and high-quality hypergraph partitioning framework Mt-KaHyPar. Its most important components are parallel improvement algorithms based on the FM algorithm and maximum flows, as well as a parallel clustering algorithm for coarsening – which are used in a multilevel scheme with log ( n ) levels. As additional components, we parallelize the n -level partitioning scheme, devise a deterministic version of our algorithm, and present optimizations for plain graphs. We evaluate our solver on more than 800 graphs and hypergraphs, and compare it with 25 different algorithms from the literature. Our fastest configuration outperforms almost all existing hypergraph partitioners with regards to both solution quality and running time. Our highest-quality configuration achieves the same solution quality as the best sequential partitioner KaHyPar, while being an order of magnitude faster with ten threads. Thus, two of our configurations occupy all fronts of the Pareto curve for hypergraph partitioning. Furthermore, our solvers exhibit good speedups, e.g., 29.6x in the geometric mean on 64 cores (deterministic), 22.3x (log ( n )-level), and 25.9x ( n -level).","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"53 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626527","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Balanced hypergraph partitioning is an NP-hard problem with many applications, e.g., optimizing communication in distributed data placement problems. The goal is to place all nodes across k different blocks of bounded size, such that hyperedges span as few parts as possible. This problem is well-studied in sequential and distributed settings, but not in shared-memory. We close this gap by devising efficient and scalable shared-memory algorithms for all components employed in the best sequential solvers without compromises with regards to solution quality. This work presents the scalable and high-quality hypergraph partitioning framework Mt-KaHyPar. Its most important components are parallel improvement algorithms based on the FM algorithm and maximum flows, as well as a parallel clustering algorithm for coarsening – which are used in a multilevel scheme with log ( n ) levels. As additional components, we parallelize the n -level partitioning scheme, devise a deterministic version of our algorithm, and present optimizations for plain graphs. We evaluate our solver on more than 800 graphs and hypergraphs, and compare it with 25 different algorithms from the literature. Our fastest configuration outperforms almost all existing hypergraph partitioners with regards to both solution quality and running time. Our highest-quality configuration achieves the same solution quality as the best sequential partitioner KaHyPar, while being an order of magnitude faster with ten threads. Thus, two of our configurations occupy all fronts of the Pareto curve for hypergraph partitioning. Furthermore, our solvers exhibit good speedups, e.g., 29.6x in the geometric mean on 64 cores (deterministic), 22.3x (log ( n )-level), and 25.9x ( n -level).
可伸缩的高质量超图分区
平衡超图分区是许多应用程序的np难题,例如,优化分布式数据放置问题中的通信。目标是将所有节点放置在k个大小有限的不同块上,以便超边跨越尽可能少的部分。这个问题在顺序和分布式设置中得到了很好的研究,但在共享内存中没有得到很好的研究。我们通过为最佳顺序求解器中使用的所有组件设计高效且可扩展的共享内存算法来缩小这一差距,而不会影响解决方案的质量。这项工作提出了可扩展的高质量超图分区框架Mt-KaHyPar。其最重要的组成部分是基于FM算法和最大流量的并行改进算法,以及用于粗化的并行聚类算法,这些算法用于log (n)级的多级方案。作为附加组件,我们并行化了n级分区方案,设计了我们算法的确定性版本,并对纯图形进行了优化。我们在800多个图和超图上评估了我们的求解器,并将其与文献中的25种不同算法进行了比较。我们最快的配置在解决方案质量和运行时间方面优于几乎所有现有的超图分区器。我们的最高质量配置实现了与最佳顺序分区器KaHyPar相同的解决方案质量,同时在10个线程时速度要快一个数量级。因此,我们的两种配置占据了超图划分的帕累托曲线的所有前沿。此外,我们的求解器表现出良好的加速,例如,64核(确定性)的几何平均速度为29.6倍,22.3倍(log (n)级)和25.9倍(n级)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信