Nonparametric estimation of a survival function in the presence of measurement errors on the failure time of interest

Pub Date : 2023-11-10 DOI:10.1002/cjs.11799
Shaojia Jin, Yanyan Liu, Guangcai Mao, Jianguo Sun, Yuanshan Wu
{"title":"Nonparametric estimation of a survival function in the presence of measurement errors on the failure time of interest","authors":"Shaojia Jin,&nbsp;Yanyan Liu,&nbsp;Guangcai Mao,&nbsp;Jianguo Sun,&nbsp;Yuanshan Wu","doi":"10.1002/cjs.11799","DOIUrl":null,"url":null,"abstract":"<p>This article discusses nonparametric estimation of a survival function in the presence of measurement errors on the observation of the failure time of interest. One situation where such issues arise would be clinical studies of chronic diseases where the observation on the time to the failure event of interest such as the onset of the disease relies on patient recall or chart review of electronic medical records. It is easy to see that both situations can be subject to measurement errors. To resolve this problem, we propose a simulation extrapolation approach to correct the bias induced by the measurement error. To overcome potential computational difficulties, we use spline regression to approximate the unspecified extrapolated coefficient function of time, and establish the asymptotic properties of our proposed estimator. The proposed method is applied to nonparametric estimation based on interval-censored data. Extensive numerical experiments involving both simulated and actual study datasets demonstrate the feasibility of this proposed estimation procedure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses nonparametric estimation of a survival function in the presence of measurement errors on the observation of the failure time of interest. One situation where such issues arise would be clinical studies of chronic diseases where the observation on the time to the failure event of interest such as the onset of the disease relies on patient recall or chart review of electronic medical records. It is easy to see that both situations can be subject to measurement errors. To resolve this problem, we propose a simulation extrapolation approach to correct the bias induced by the measurement error. To overcome potential computational difficulties, we use spline regression to approximate the unspecified extrapolated coefficient function of time, and establish the asymptotic properties of our proposed estimator. The proposed method is applied to nonparametric estimation based on interval-censored data. Extensive numerical experiments involving both simulated and actual study datasets demonstrate the feasibility of this proposed estimation procedure.

分享
查看原文
在相关故障时间存在测量误差的情况下,对生存函数进行非参数估计
这篇文章讨论了在对相关失效时间的观测存在测量误差的情况下,对生存函数进行非参数估计的问题。出现此类问题的一种情况是慢性疾病的临床研究,其中对相关失效事件(如发病)发生时间的观察依赖于患者回忆或电子病历的图表审查。不难看出,这两种情况都可能存在测量误差。为了解决这个问题,我们提出了一种模拟外推法来纠正测量误差引起的偏差。为了克服潜在的计算困难,我们使用样条回归来逼近未指定的时间外推系数函数,并建立了我们提出的估计器的渐近特性。我们将所提出的方法应用于基于区间删失数据的非参数估计。涉及模拟数据集和实际研究数据集的大量数值实验证明了所提估计程序的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信