{"title":"Near-optimal distributed dominating set in bounded arboricity graphs","authors":"Michal Dory, Mohsen Ghaffari, Saeed Ilchi","doi":"10.1007/s00446-023-00447-z","DOIUrl":null,"url":null,"abstract":"Abstract We describe a simple deterministic $$O( \\varepsilon ^{-1} \\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>ε</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> round distributed algorithm for $$(2\\alpha +1)(1 + \\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation of minimum weighted dominating set on graphs with arboricity at most $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> . Here $$\\Delta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Δ</mml:mi> </mml:math> denotes the maximum degree. We also show a lower bound proving that this round complexity is nearly optimal even for the unweighted case, via a reduction from the celebrated KMW lower bound on distributed vertex cover approximation (Kuhn et al. in JACM 63:116, 2016). Our algorithm improves on all the previous results (that work only for unweighted graphs) including a randomized $$O(\\alpha ^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Lenzen et al. in International symposium on distributed computing, Springer, 2010), a deterministic $$O(\\alpha \\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Lenzen et al. in international symposium on distributed computing, Springer, 2010), a deterministic $$O(\\alpha )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\log ^2 \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mo>log</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (implicit in Bansal et al. in Inform Process Lett 122:21–24, 2017; Proceeding 17th symposium on discrete algorithms (SODA), 2006), and a randomized $$O(\\alpha )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\alpha \\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Morgan et al. in 35th International symposiumon distributed computing, 2021). We also provide a randomized $$O(\\alpha \\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> round distributed algorithm that sharpens the approximation factor to $$\\alpha (1+o(1))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . If each node is restricted to do polynomial-time computations, our approximation factor is tight in the first order as it is NP-hard to achieve $$\\alpha - 1 - \\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> approximation (Bansal et al. in Inform Process Lett 122:21-24, 2017).","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00446-023-00447-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We describe a simple deterministic $$O( \varepsilon ^{-1} \log \Delta )$$ O(ε-1logΔ) round distributed algorithm for $$(2\alpha +1)(1 + \varepsilon )$$ (2α+1)(1+ε) approximation of minimum weighted dominating set on graphs with arboricity at most $$\alpha $$ α . Here $$\Delta $$ Δ denotes the maximum degree. We also show a lower bound proving that this round complexity is nearly optimal even for the unweighted case, via a reduction from the celebrated KMW lower bound on distributed vertex cover approximation (Kuhn et al. in JACM 63:116, 2016). Our algorithm improves on all the previous results (that work only for unweighted graphs) including a randomized $$O(\alpha ^2)$$ O(α2) approximation in $$O(\log n)$$ O(logn) rounds (Lenzen et al. in International symposium on distributed computing, Springer, 2010), a deterministic $$O(\alpha \log \Delta )$$ O(αlogΔ) approximation in $$O(\log \Delta )$$ O(logΔ) rounds (Lenzen et al. in international symposium on distributed computing, Springer, 2010), a deterministic $$O(\alpha )$$ O(α) approximation in $$O(\log ^2 \Delta )$$ O(log2Δ) rounds (implicit in Bansal et al. in Inform Process Lett 122:21–24, 2017; Proceeding 17th symposium on discrete algorithms (SODA), 2006), and a randomized $$O(\alpha )$$ O(α) approximation in $$O(\alpha \log n)$$ O(αlogn) rounds (Morgan et al. in 35th International symposiumon distributed computing, 2021). We also provide a randomized $$O(\alpha \log \Delta )$$ O(αlogΔ) round distributed algorithm that sharpens the approximation factor to $$\alpha (1+o(1))$$ α(1+o(1)) . If each node is restricted to do polynomial-time computations, our approximation factor is tight in the first order as it is NP-hard to achieve $$\alpha - 1 - \varepsilon $$ α-1-ε approximation (Bansal et al. in Inform Process Lett 122:21-24, 2017).
期刊介绍:
The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems.
Topics covered by the journal include but are not limited to:
design and analysis of distributed algorithms;
multiprocessor and multi-core architectures and algorithms;
synchronization protocols and concurrent programming;
distributed operating systems and middleware;
fault-tolerance, reliability and availability;
architectures and protocols for communication networks and peer-to-peer systems;
security in distributed computing, cryptographic protocols;
mobile, sensor, and ad hoc networks;
internet applications;
concurrency theory;
specification, semantics, verification, and testing of distributed systems.
In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.