Computing Circuit Polynomials in the Algebraic Rigidity Matroid

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Goran Malić, Ileana Streinu
{"title":"Computing Circuit Polynomials in the Algebraic Rigidity Matroid","authors":"Goran Malić, Ileana Streinu","doi":"10.1137/21m1437986","DOIUrl":null,"url":null,"abstract":"We present an algorithm for computing circuit polynomials in the algebraic rigidity matroid associated to the Cayley–Menger ideal for points in 2D. It relies on combinatorial resultants, a new operation on graphs that captures properties of the Sylvester resultant of two polynomials in this ideal. We show that every rigidity circuit has a construction tree from graphs based on this operation. Our algorithm performs an algebraic elimination guided by such a construction tree and uses classical resultants, factorization, and ideal membership. To highlight its effectiveness, we implemented the algorithm in Mathematica: it took less than 15 seconds on an example where a Gröbner basis calculation took 5 days and 6 hours. Additional speed-ups are obtained using non- generators of the Cayley–Menger ideal and simple variations on our main algorithm.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":"24 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1437986","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We present an algorithm for computing circuit polynomials in the algebraic rigidity matroid associated to the Cayley–Menger ideal for points in 2D. It relies on combinatorial resultants, a new operation on graphs that captures properties of the Sylvester resultant of two polynomials in this ideal. We show that every rigidity circuit has a construction tree from graphs based on this operation. Our algorithm performs an algebraic elimination guided by such a construction tree and uses classical resultants, factorization, and ideal membership. To highlight its effectiveness, we implemented the algorithm in Mathematica: it took less than 15 seconds on an example where a Gröbner basis calculation took 5 days and 6 hours. Additional speed-ups are obtained using non- generators of the Cayley–Menger ideal and simple variations on our main algorithm.
计算代数刚性矩阵中的电路多项式
我们提出了一种计算二维点的Cayley-Menger理想代数刚性矩阵中电路多项式的算法。它依赖于组合结式,这是一种对图的新操作,它捕获了这个理想中两个多项式的Sylvester结式的性质。我们证明了每个刚性电路都有一个基于此操作的图的构造树。我们的算法在构造树的指导下进行代数消去,并使用经典结果、因式分解和理想隶属度。为了突出其有效性,我们在Mathematica中实现了该算法:在一个示例中,它只花了不到15秒的时间,而一个Gröbner基础计算需要5天零6小时。使用Cayley-Menger理想的非生成器和我们的主要算法的简单变体获得了额外的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信