{"title":"Homological dimension based on a class of Gorenstein flat modules","authors":"Georgios Dalezios, Ioannis Emmanouil","doi":"10.5802/crmath.480","DOIUrl":null,"url":null,"abstract":"In this paper, we study the relative homological dimension based on the class of projectively coresolved Gorenstein flat modules (PGF-modules), that were introduced by Saroch and Stovicek in [26]. The resulting PGF-dimension of modules has several properties in common with the Gorenstein projective dimension, the relative homological theory based on the class of Gorenstein projective modules. In particular, there is a hereditary Hovey triple in the category of modules of finite PGF-dimension, whose associated homotopy category is triangulated equivalent to the stable category of PGF-modules. Studying the finiteness of the PGF global dimension reveals a connection between classical homological invariants of left and right modules over the ring, that leads to generalizations of certain results by Jensen [24], Gedrich and Gruenberg [17] that were originally proved in the realm of commutative Noetherian rings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we study the relative homological dimension based on the class of projectively coresolved Gorenstein flat modules (PGF-modules), that were introduced by Saroch and Stovicek in [26]. The resulting PGF-dimension of modules has several properties in common with the Gorenstein projective dimension, the relative homological theory based on the class of Gorenstein projective modules. In particular, there is a hereditary Hovey triple in the category of modules of finite PGF-dimension, whose associated homotopy category is triangulated equivalent to the stable category of PGF-modules. Studying the finiteness of the PGF global dimension reveals a connection between classical homological invariants of left and right modules over the ring, that leads to generalizations of certain results by Jensen [24], Gedrich and Gruenberg [17] that were originally proved in the realm of commutative Noetherian rings.