Holistic multiphysics simulation of climatic responses of cold region pavements

Yusheng Jiang, Xiong Yu
{"title":"Holistic multiphysics simulation of climatic responses of cold region pavements","authors":"Yusheng Jiang, Xiong Yu","doi":"10.1186/s43065-023-00090-9","DOIUrl":null,"url":null,"abstract":"Abstract In cold regions, the environment dynamics lead to variations of soil temperature, water content, and deformation, which are characterized by highly coupled physical interplay. The hydraulic and thermal properties of unsaturated soils are highly nonlinear, which is further complicated when subjected to freezing. This paper presents a comprehensive multiphysics coupling model to evaluate these complex processes. The model considers the behaviors of unsaturated frozen soils. It accounts for the influences of meteorological, geothermal, and hydrological factors. The model is validated through two pavement case studies using Long-Term Pavement Performance (LTPP) road section data. The first case analysis is performed for a pavement section in Vermont, and the simulation lasted for 30 days during a non-freezing season on an hourly basis. The results validated the performance of the model considering unsaturated soil behaviors. The second case study is based on a daily analysis of a pavement section in South Dakota over a freezing–thawing cycle over 194 days. The results validated the model in considering the frozen unsaturated soil behaviors. Both case studies demonstrate the performance of this comprehensive model in quantifying the spatial and temporal variations of soil temperature and water content in response to environmental stressors. The capability of the model in accurately predicting the responses of pavement to the meteorological factors unleashes the potential of this model to assess the effects of climate and climate change on cold region pavement, as well as other types of geo-structures.","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43065-023-00090-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In cold regions, the environment dynamics lead to variations of soil temperature, water content, and deformation, which are characterized by highly coupled physical interplay. The hydraulic and thermal properties of unsaturated soils are highly nonlinear, which is further complicated when subjected to freezing. This paper presents a comprehensive multiphysics coupling model to evaluate these complex processes. The model considers the behaviors of unsaturated frozen soils. It accounts for the influences of meteorological, geothermal, and hydrological factors. The model is validated through two pavement case studies using Long-Term Pavement Performance (LTPP) road section data. The first case analysis is performed for a pavement section in Vermont, and the simulation lasted for 30 days during a non-freezing season on an hourly basis. The results validated the performance of the model considering unsaturated soil behaviors. The second case study is based on a daily analysis of a pavement section in South Dakota over a freezing–thawing cycle over 194 days. The results validated the model in considering the frozen unsaturated soil behaviors. Both case studies demonstrate the performance of this comprehensive model in quantifying the spatial and temporal variations of soil temperature and water content in response to environmental stressors. The capability of the model in accurately predicting the responses of pavement to the meteorological factors unleashes the potential of this model to assess the effects of climate and climate change on cold region pavement, as well as other types of geo-structures.
寒区路面气候响应的整体多物理场模拟
在寒冷地区,环境动力学导致土壤温度、含水量和变形的变化,这些变化具有高度耦合的物理相互作用。非饱和土的水热特性是高度非线性的,在冻结作用下更加复杂。本文提出了一个综合的多物理场耦合模型来评价这些复杂的过程。该模型考虑了非饱和冻土的力学特性。它考虑了气象、地热和水文因素的影响。通过使用长期路面性能(LTPP)路段数据的两个路面案例研究验证了该模型。第一个案例分析是在佛蒙特州的一段路面上进行的,模拟持续了30天,在非冰冻季节,以小时为基础。结果验证了该模型在考虑非饱和土特性的情况下的有效性。第二个案例研究是基于对南达科塔州一段路面在194天的冻融循环中的每日分析。结果验证了该模型在考虑冻结非饱和土特性时的有效性。这两个案例都证明了该综合模型在量化土壤温度和含水量响应环境压力的时空变化方面的性能。该模型在准确预测路面对气象因素的响应方面的能力,释放了该模型评估气候和气候变化对寒冷地区路面以及其他类型土工结构的影响的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信