Torus quotient of the Grassmannian G n,2n

Pub Date : 2023-11-10 DOI:10.5802/crmath.501
Arpita Nayek, Pinakinath Saha
{"title":"Torus quotient of the Grassmannian G n,2n ","authors":"Arpita Nayek, Pinakinath Saha","doi":"10.5802/crmath.501","DOIUrl":null,"url":null,"abstract":"Let G n,2n be the Grassmannian parameterizing the n-dimensional subspaces of ℂ 2n . The Picard group of G n,2n is generated by a unique ample line bundle 𝒪(1). Let T be a maximal torus of SL(2n,ℂ) which acts on G n,2n and 𝒪(1). By [10, Theorem 3.10, p. 764], 2 is the minimal integer k such that 𝒪(k) descends to the GIT quotient. In this article, we prove that the GIT quotient of G n,2n (n≥3) by T with respect to 𝒪(2)=𝒪(1) ⊗2 is not projectively normal when polarized with the descent of 𝒪(2).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G n,2n be the Grassmannian parameterizing the n-dimensional subspaces of ℂ 2n . The Picard group of G n,2n is generated by a unique ample line bundle 𝒪(1). Let T be a maximal torus of SL(2n,ℂ) which acts on G n,2n and 𝒪(1). By [10, Theorem 3.10, p. 764], 2 is the minimal integer k such that 𝒪(k) descends to the GIT quotient. In this article, we prove that the GIT quotient of G n,2n (n≥3) by T with respect to 𝒪(2)=𝒪(1) ⊗2 is not projectively normal when polarized with the descent of 𝒪(2).
分享
查看原文
G的环面商n,2n
设gn,2n是参数化2n的n维子空间的格拉斯曼函数。gn,2n的Picard群是由一个唯一的样本线束态(1)生成的。设T是SL(2n,)的极大环面,作用于gn,2n和态(1)。根据[10,定理3.10,p. 764], 2是最小整数k,使得 (k)下降到GIT商。在本文中,我们证明了gn,2n (n≥3)by T关于态(2)=态(1)⊗2的GIT商随着态(2)的下降而极化时不是射影正态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信