An entropic generalization of Caffarelli’s contraction theorem via covariance inequalities

Pub Date : 2023-11-10 DOI:10.5802/crmath.486
Sinho Chewi, Aram-Alexandre Pooladian
{"title":"An entropic generalization of Caffarelli’s contraction theorem via covariance inequalities","authors":"Sinho Chewi, Aram-Alexandre Pooladian","doi":"10.5802/crmath.486","DOIUrl":null,"url":null,"abstract":"The optimal transport map between the standard Gaussian measure and an α-strongly log-concave probability measure is α -1/2 -Lipschitz, as first observed in a celebrated theorem of Caffarelli. In this paper, we apply two classical covariance inequalities (the Brascamp–Lieb and Cramér–Rao inequalities) to prove a sharp bound on the Lipschitz constant of the map that arises from entropically regularized optimal transport. In the limit as the regularization tends to zero, we obtain an elegant and short proof of Caffarelli’s original result. We also extend Caffarelli’s theorem to the setting in which the Hessians of the log-densities of the measures are bounded by arbitrary positive definite commuting matrices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The optimal transport map between the standard Gaussian measure and an α-strongly log-concave probability measure is α -1/2 -Lipschitz, as first observed in a celebrated theorem of Caffarelli. In this paper, we apply two classical covariance inequalities (the Brascamp–Lieb and Cramér–Rao inequalities) to prove a sharp bound on the Lipschitz constant of the map that arises from entropically regularized optimal transport. In the limit as the regularization tends to zero, we obtain an elegant and short proof of Caffarelli’s original result. We also extend Caffarelli’s theorem to the setting in which the Hessians of the log-densities of the measures are bounded by arbitrary positive definite commuting matrices.
分享
查看原文
协方差不等式对卡法雷利收缩定理的熵推广
标准高斯测度与α-强对数凹概率测度之间的最优传输映射是α -1/2 -Lipschitz,这在著名的卡法雷利定理中首次被观察到。本文应用两个经典的协方差不等式(Brascamp-Lieb和cram - rao不等式)证明了由熵正则化最优输运引起的映射的Lipschitz常数的一个锐界。在正则化趋于零的极限下,我们得到了对卡法雷利原结果的简洁证明。我们还将Caffarelli定理推广到测度的对数密度的Hessians由任意正定交换矩阵约束的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信