Prediction of Factors for Patients with Hypertension and Dyslipidemia Using Multilayer Feedforward Neural Networks and Ordered Logistic Regression Analysis: A Robust Hybrid Methodology

IF 0.3 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
Wan Muhamad Amir W Ahmad
{"title":"Prediction of Factors for Patients with Hypertension and Dyslipidemia Using Multilayer Feedforward Neural Networks and Ordered Logistic Regression Analysis: A Robust Hybrid Methodology","authors":"Wan Muhamad Amir W Ahmad","doi":"10.7454/msk.v27i2.1458","DOIUrl":null,"url":null,"abstract":"Background: Hypertension is characterized by abnormally high arterial blood pressure and is a public health problem with a high prevalence of 20%–30% worldwide. This research combined multiple logistic regression (MLR) and multilayer feedforward neural networks to construct and validate a model for evaluating the factors linked with hypertension in patients with dyslipidemia. Methods: A total of 1000 data entries from Hospital Universiti Sains Malaysia and advanced computational statistical modeling methodologies were used to evaluate seven traits associated with hypertension. R-Studio software was utilized. Each sample's statistics were calculated using a hybrid model that included bootstrapping. Results: Variable validation was performed by using the well-established bootstrap-integrated MLR technique. All variables affected the hazard ratio as follows: total cholesterol (β1: −0.00664; p < 0.25), diabetes status (β2: 0.62332; p < 0.25), diastolic reading (β3: 0.08160; p < 0.25), height measurement (β4: −0.05411; p < 0.25), coronary heart disease incidence (β5: 1.42544; p < 0.25), triglyceride reading (β6: 0.00616; p < 0.25), and waist reading (β7: −0.00158; p < 0.25). Conclusions: A hybrid approach was developed and extensively tested. The hybrid technique is superior to other standalone techniques and allows an improved understanding of the influence of variables on outcomes.","PeriodicalId":51994,"journal":{"name":"Makara Journal of Health Research","volume":"24 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Health Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/msk.v27i2.1458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hypertension is characterized by abnormally high arterial blood pressure and is a public health problem with a high prevalence of 20%–30% worldwide. This research combined multiple logistic regression (MLR) and multilayer feedforward neural networks to construct and validate a model for evaluating the factors linked with hypertension in patients with dyslipidemia. Methods: A total of 1000 data entries from Hospital Universiti Sains Malaysia and advanced computational statistical modeling methodologies were used to evaluate seven traits associated with hypertension. R-Studio software was utilized. Each sample's statistics were calculated using a hybrid model that included bootstrapping. Results: Variable validation was performed by using the well-established bootstrap-integrated MLR technique. All variables affected the hazard ratio as follows: total cholesterol (β1: −0.00664; p < 0.25), diabetes status (β2: 0.62332; p < 0.25), diastolic reading (β3: 0.08160; p < 0.25), height measurement (β4: −0.05411; p < 0.25), coronary heart disease incidence (β5: 1.42544; p < 0.25), triglyceride reading (β6: 0.00616; p < 0.25), and waist reading (β7: −0.00158; p < 0.25). Conclusions: A hybrid approach was developed and extensively tested. The hybrid technique is superior to other standalone techniques and allows an improved understanding of the influence of variables on outcomes.
使用多层前馈神经网络和有序逻辑回归分析预测高血压和血脂异常患者的因素:一种鲁棒混合方法
背景:高血压以异常高的动脉血压为特征,是全球20%-30%的高患病率的公共卫生问题。本研究结合多元逻辑回归(MLR)和多层前馈神经网络,构建并验证了血脂异常患者高血压相关因素评估模型。方法:使用马来西亚圣斯大学医院的1000个数据条目和先进的计算统计建模方法来评估与高血压相关的7个特征。使用R-Studio软件。每个样本的统计量都是使用包含自举的混合模型计算的。结果:采用成熟的自举集成MLR技术进行变量验证。所有变量影响风险比如下:总胆固醇(β1: - 0.00664;p & lt;0.25),糖尿病状况(β2: 0.62332;p & lt;0.25),舒张读数(β3: 0.08160;p & lt;0.25),高度测量(β4:−0.05411;p & lt;0.25),冠心病发病率(β5: 1.42544;p & lt;0.25),甘油三酯读数(β6: 0.00616;p & lt;0.25),腰围读数(β7:−0.00158;p & lt;0.25)。结论:开发了一种混合方法并进行了广泛测试。混合技术优于其他独立技术,并且可以更好地理解变量对结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Makara Journal of Health Research
Makara Journal of Health Research MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信