Scaling metric measurement invariance models

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
Eric Klopp, Stefan Klößner
{"title":"Scaling metric measurement invariance models","authors":"Eric Klopp, Stefan Klößner","doi":"10.5964/meth.10177","DOIUrl":null,"url":null,"abstract":"<p xmlns=\"http://www.ncbi.nlm.nih.gov/JATS1\">This paper aims at clarifying the questions regarding the effects of the scaling method on the discrepancy function of the metric measurement invariance model. We provide examples and a formal account showing that neither the choice of the scaling method in general nor the choice of a particular referent indicator affects the value of the discrepancy function. Thus, the test statistic is not affected by the scaling method, either. The results rely on an appropriate application of the scaling restrictions, which can be phrased as a simple rule: \"Apply the scaling restriction in one group only!\" We develop formulas to calculate the degrees of freedom of χ²-difference tests comparing metric models to the corresponding configural model. Our findings show that it is impossible to test the invariance of the estimated loading of exactly one indicator, because metric MI models aimed at doing so are actually equivalent to the configural model.","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"37 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5964/meth.10177","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims at clarifying the questions regarding the effects of the scaling method on the discrepancy function of the metric measurement invariance model. We provide examples and a formal account showing that neither the choice of the scaling method in general nor the choice of a particular referent indicator affects the value of the discrepancy function. Thus, the test statistic is not affected by the scaling method, either. The results rely on an appropriate application of the scaling restrictions, which can be phrased as a simple rule: "Apply the scaling restriction in one group only!" We develop formulas to calculate the degrees of freedom of χ²-difference tests comparing metric models to the corresponding configural model. Our findings show that it is impossible to test the invariance of the estimated loading of exactly one indicator, because metric MI models aimed at doing so are actually equivalent to the configural model.

缩放度量不变性模型
本文旨在澄清标度法对度量不变性模型的差异函数的影响问题。我们提供的例子和一个正式的帐户表明,无论是选择一般的标度方法,还是选择特定的参考指标,都不会影响差异函数的值。因此,测试统计量也不受缩放方法的影响。结果依赖于缩放限制的适当应用,可以将其表述为一个简单的规则:“仅在一个组中应用缩放限制!”我们开发了公式来计算比较度量模型和相应的构形模型的χ 2差异检验的自由度。我们的研究结果表明,不可能准确地测试一个指标的估计负荷的不变性,因为旨在这样做的度量MI模型实际上等同于配置模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信