Chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity

IF 1.9 4区 物理与天体物理 Q3 OPTICS
Khalil Al-Ghafri
{"title":"Chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity","authors":"Khalil Al-Ghafri","doi":"10.1051/jeos/2023038","DOIUrl":null,"url":null,"abstract":"The present study is devoted to investigate the chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity. Thus, the mathematical model consists of coupled nonlinear Schrödinger equation (NLSE) that describes pulse propagation in a medium of fiber Bragg gratings (BGs). To reach an integrable form for this intricate model, the phase-matching condition is applied to derive equivalent equations that are handled analytically. By means of auxiliary equation method which possesses Jacobi elliptic function (JEF) solutions, various forms of soliton solutions are extracted when the modulus of JEF approaches 1. The generated chirped gap solitons have different types of structures such as bright, dark, singular, W-shaped, kink, anti-kink and Kink-dark solitons. Further to this, two soliton waves namely chirped bright quasi-soliton and chirped dark quasi-soliton are also created. The dynamic behaviors of chirped gap solitons are illustrated in addition to their corresponding chirp. It is noticed that self-phase modulation and dispersive reflectivity have remarkable influences on the pulse propagation. These detailed results may enhance the engineering applications related to the field of fiber BGs.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"54 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jeos/2023038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study is devoted to investigate the chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity. Thus, the mathematical model consists of coupled nonlinear Schrödinger equation (NLSE) that describes pulse propagation in a medium of fiber Bragg gratings (BGs). To reach an integrable form for this intricate model, the phase-matching condition is applied to derive equivalent equations that are handled analytically. By means of auxiliary equation method which possesses Jacobi elliptic function (JEF) solutions, various forms of soliton solutions are extracted when the modulus of JEF approaches 1. The generated chirped gap solitons have different types of structures such as bright, dark, singular, W-shaped, kink, anti-kink and Kink-dark solitons. Further to this, two soliton waves namely chirped bright quasi-soliton and chirped dark quasi-soliton are also created. The dynamic behaviors of chirped gap solitons are illustrated in addition to their corresponding chirp. It is noticed that self-phase modulation and dispersive reflectivity have remarkable influences on the pulse propagation. These detailed results may enhance the engineering applications related to the field of fiber BGs.
具有色散反射率的库德里亚绍夫自相位调制定律的啁啾隙孤子
本文研究了具有色散反射率的具有库德里亚绍夫自相位调制定律的啁啾隙孤子。因此,数学模型由耦合非线性Schrödinger方程(NLSE)组成,该方程描述了脉冲在光纤布拉格光栅(BGs)介质中的传播。为了得到这个复杂模型的可积形式,采用相位匹配条件推导出解析处理的等价方程。利用具有Jacobi椭圆函数(JEF)解的辅助方程方法,在JEF的模量接近1时提取出各种形式的孤子解。生成的啁啾隙孤子具有亮孤子、暗孤子、奇异孤子、w形孤子、扭结孤子、反扭结孤子和扭结-暗孤子等不同类型的结构。在此基础上,还产生了啁啾亮准孤子和啁啾暗准孤子两个孤子波。讨论了啁啾间隙孤子的动力学行为及其相应的啁啾。注意到自相位调制和色散反射率对脉冲的传播有显著的影响。这些详细的研究结果将有助于光纤光纤光栅领域的工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信