{"title":"Exponential quasi-ergodicity for processes with discontinuous trajectories","authors":"Aurélien Velleret","doi":"10.1051/ps/2023016","DOIUrl":null,"url":null,"abstract":"This paper tackles the issue of establishing an upper-bound on the asymptotic ratio of survival probabilities between two different initial conditions, asymptotically in time for a given Markov process with extinction. Such a comparison is a crucial step in recent techniques for proving exponential convergence to a quasi-stationary distribution. We introduce a weak form of the Harnack inequality as the essential ingredient for such a comparison. This property is actually a consequence of the convergence property we intend to prove. Its complexity appears as the price to pay for the level of flexibility required by our applications, notably for processes with jumps on a multidimensional state-space. We show in our illustrations how simply and efficiently it can be used nonetheless. As illustrations, we consider two continuous-time processes on [[EQUATION]] that do not satisfy the classical Harnack inequalities, even in a local version. The first one is a piecewise deterministic process while the second is a pure jump process with restrictions on the directions of its jumps.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"52 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ps/2023016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
This paper tackles the issue of establishing an upper-bound on the asymptotic ratio of survival probabilities between two different initial conditions, asymptotically in time for a given Markov process with extinction. Such a comparison is a crucial step in recent techniques for proving exponential convergence to a quasi-stationary distribution. We introduce a weak form of the Harnack inequality as the essential ingredient for such a comparison. This property is actually a consequence of the convergence property we intend to prove. Its complexity appears as the price to pay for the level of flexibility required by our applications, notably for processes with jumps on a multidimensional state-space. We show in our illustrations how simply and efficiently it can be used nonetheless. As illustrations, we consider two continuous-time processes on [[EQUATION]] that do not satisfy the classical Harnack inequalities, even in a local version. The first one is a piecewise deterministic process while the second is a pure jump process with restrictions on the directions of its jumps.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.