Schur multipliers in Schatten-von Neumann classes

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
José M. Conde-Alonso, Adrián M. González-Pérez, Javier Parcet, Eduardo Tablate
{"title":"Schur multipliers in Schatten-von Neumann classes","authors":"José M. Conde-Alonso, Adrián M. González-Pérez, Javier Parcet, Eduardo Tablate","doi":"10.4007/annals.2023.198.3.5","DOIUrl":null,"url":null,"abstract":"We establish a rather unexpected and simple criterion for the boundedness of Schur multipliers $S_M$ on Schatten $p$-classes which solves a conjecture proposed by Mikael de la Salle. Given $1\\lt p\\lt \\infty$, a simple form of our main result for $\\mathbf{R}^n \\times \\mathbf{R}^n$ matrices reads as follows: $$\\big\\| S_M \\colon S_p \\to S_p \\big\\|_{\\mathrm{cb}} \\lesssim \\frac{p^2}{p-1} \\sum_{|\\gamma| \\le [\\frac{n}{2}] +1} \\Big\\| |x-y|^{|\\gamma|} \\Big\\{ \\big| \\partial_x^\\gamma M(x,y) \\big| + \\big| \\partial_y^\\gamma M(x,y) \\big| \\Big\\} \\Big\\|_\\infty.$$ In this form, it is a full matrix (nonToeplitz/nontrigonometric) amplification of the Hörmander-Mikhlin multiplier theorem, which admits lower fractional differentiability orders $\\sigma > \\frac{n}{2}$ as well. It trivially includes Arazy's conjecture for $S_p$-multipliers and extends it to $\\alpha$-divided differences. It also leads to new Littlewood-Paley characterizations of $S_p$-norms and strong applications in harmonic analysis for nilpotent and high rank simple Lie group algebras.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.3.5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We establish a rather unexpected and simple criterion for the boundedness of Schur multipliers $S_M$ on Schatten $p$-classes which solves a conjecture proposed by Mikael de la Salle. Given $1\lt p\lt \infty$, a simple form of our main result for $\mathbf{R}^n \times \mathbf{R}^n$ matrices reads as follows: $$\big\| S_M \colon S_p \to S_p \big\|_{\mathrm{cb}} \lesssim \frac{p^2}{p-1} \sum_{|\gamma| \le [\frac{n}{2}] +1} \Big\| |x-y|^{|\gamma|} \Big\{ \big| \partial_x^\gamma M(x,y) \big| + \big| \partial_y^\gamma M(x,y) \big| \Big\} \Big\|_\infty.$$ In this form, it is a full matrix (nonToeplitz/nontrigonometric) amplification of the Hörmander-Mikhlin multiplier theorem, which admits lower fractional differentiability orders $\sigma > \frac{n}{2}$ as well. It trivially includes Arazy's conjecture for $S_p$-multipliers and extends it to $\alpha$-divided differences. It also leads to new Littlewood-Paley characterizations of $S_p$-norms and strong applications in harmonic analysis for nilpotent and high rank simple Lie group algebras.
schaten -von Neumann类中的Schur乘数
我们建立了Schatten $p$类上Schur乘子$S_M$有界性的一个意想不到的简单判据,解决了Mikael de la Salle提出的一个猜想。给定$1\lt p\lt \infty$,我们对$\mathbf{R}^n \times \mathbf{R}^n$矩阵的主要结果的简单形式如下:$$\big\| S_M \colon S_p \to S_p \big\|_{\mathrm{cb}} \lesssim \frac{p^2}{p-1} \sum_{|\gamma| \le [\frac{n}{2}] +1} \Big\| |x-y|^{|\gamma|} \Big\{ \big| \partial_x^\gamma M(x,y) \big| + \big| \partial_y^\gamma M(x,y) \big| \Big\} \Big\|_\infty.$$在这种形式中,它是Hörmander-Mikhlin乘数定理的一个全矩阵(非toeplitz /非三角)放大,它也允许较低的分数阶可微性$\sigma > \frac{n}{2}$。它简单地包含了Arazy关于$S_p$ -乘数的猜想,并将其扩展到$\alpha$ -除差。本文还得到了$S_p$ -范数的新的Littlewood-Paley刻画,并在幂零和高阶单李群代数的调和分析中有了较强的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信