MARCO CALAUTTI, SERGIO GRECO, CRISTIAN MOLINARO, IRINA TRUBITSYNA
{"title":"Querying Data Exchange Settings Beyond Positive Queries","authors":"MARCO CALAUTTI, SERGIO GRECO, CRISTIAN MOLINARO, IRINA TRUBITSYNA","doi":"10.1017/s1471068423000339","DOIUrl":null,"url":null,"abstract":"Abstract Data exchange, the problem of transferring data from a source schema to a target schema, has been studied for several years. The semantics of answering positive queries over the target schema has been defined in early work, but little attention has been paid to more general queries. A few proposals of semantics for more general queries exist but they either do not properly extend the standard semantics under positive queries, giving rise to counterintuitive answers, or they make query answering undecidable even for the most important data exchange settings, for example, with weakly-acyclic dependencies. The goal of this paper is to provide a new semantics for data exchange that is able to deal with general queries. At the same time, we want our semantics to coincide with the classical one when focusing on positive queries, and to not trade-off too much in terms of complexity of query answering. We show that query answering is undecidable in general under the new semantics, but it is $\\text{co}\\text{NP}\\text{-complete}$ when the dependencies are weakly-acyclic. Moreover, in the latter case, we show that exact answers under our semantics can be computed by means of logic programs with choice, thus exploiting existing efficient systems. For more efficient computations, we also show that our semantics allows for the construction of a representative target instance, similar in spirit to a universal solution, that can be exploited for computing approximate answers in polynomial time.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"14 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1471068423000339","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Data exchange, the problem of transferring data from a source schema to a target schema, has been studied for several years. The semantics of answering positive queries over the target schema has been defined in early work, but little attention has been paid to more general queries. A few proposals of semantics for more general queries exist but they either do not properly extend the standard semantics under positive queries, giving rise to counterintuitive answers, or they make query answering undecidable even for the most important data exchange settings, for example, with weakly-acyclic dependencies. The goal of this paper is to provide a new semantics for data exchange that is able to deal with general queries. At the same time, we want our semantics to coincide with the classical one when focusing on positive queries, and to not trade-off too much in terms of complexity of query answering. We show that query answering is undecidable in general under the new semantics, but it is $\text{co}\text{NP}\text{-complete}$ when the dependencies are weakly-acyclic. Moreover, in the latter case, we show that exact answers under our semantics can be computed by means of logic programs with choice, thus exploiting existing efficient systems. For more efficient computations, we also show that our semantics allows for the construction of a representative target instance, similar in spirit to a universal solution, that can be exploited for computing approximate answers in polynomial time.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.